These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 12432577)

  • 1. Stability of expanded beds during the application of crude feedstock.
    Lin DQ; Kula MR; Liten A; Thömmes J
    Biotechnol Bioeng; 2003 Jan; 81(1):21-6. PubMed ID: 12432577
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of biomass on the hydrodynamic behavior and stability of expanded beds.
    Lin DQ; Thömmes J; Kula MR; Hubbuch JJ
    Biotechnol Bioeng; 2004 Aug; 87(3):337-46. PubMed ID: 15281108
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomass/adsorbent electrostatic interactions in expanded bed adsorption: a zeta potential study.
    Lin DQ; Brixius PJ; Hubbuch JJ; Thömmes J; Kula MR
    Biotechnol Bioeng; 2003 Jul; 83(2):149-57. PubMed ID: 12768620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Minimising biomass/adsorbent interactions in expanded bed adsorption processes: a methodological design approach.
    Lin DQ; Fernández-Lahore HM; Kula MR; Thömmes J
    Bioseparation; 2001; 10(1-3):7-19. PubMed ID: 11787800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of different operating modes and biomass concentrations on the recovery of recombinant hepatitis B core antigen from thermal-treated unclarified Escherichia coli feedstock.
    Ng MY; Tan WS; Abdullah N; Ling TC; Tey BT
    J Biotechnol; 2008 Nov; 138(3-4):74-9. PubMed ID: 18786579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A study of the influence of yeast cell debris on protein and alpha-glucosidase adsorption at various zones within the expanded bed using in-bed sampling.
    Balasundaram B; Harrison ST; Li J; Chase HA
    Biotechnol Bioeng; 2008 Feb; 99(3):614-24. PubMed ID: 17680682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The use of ion-selective electrodes for evaluating residence time distributions in expanded bed adsorption systems.
    Fernández-Lahore HM; Lin DQ; Hubbuch JJ; Kula MR; Thömmes J
    Biotechnol Prog; 2001; 17(6):1128-36. PubMed ID: 11735451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell/adsorbent interactions in expanded bed adsorption of proteins.
    Feuser J; Walter J; Kula MR; Thömmes J
    Bioseparation; 1999; 8(1-5):99-109. PubMed ID: 10734561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of the extent of disruption of Bakers' yeast on protein adsorption in expanded beds.
    Balasundaram B; Harrison ST
    J Biotechnol; 2008 Feb; 133(3):360-9. PubMed ID: 17933410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization considerations for the purification of alpha1-antitrypsin using silica-based ion-exchange adsorbents in packed and expanded beds.
    Finette GM; Baharin B; Mao QM; Hearn MT
    Biotechnol Prog; 1998; 14(2):286-93. PubMed ID: 9548782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Zeta potential as a diagnostic tool to evaluate the biomass electrostatic adhesion during ion-exchange expanded bed application.
    Lin DQ; Zhong LN; Yao SJ
    Biotechnol Bioeng; 2006 Sep; 95(1):185-91. PubMed ID: 16739222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of dimensionless residence time to study variations in breakthrough behaviour in expanded beds formed from varied particle size distributions.
    Gardner PJ; Willoughby N; Hjorth R; Lacki K; Titchener-Hooker NJ
    Biotechnol Bioeng; 2004 Aug; 87(3):347-53. PubMed ID: 15281109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of biomass accumulation on bed expansion characteristics of a down-flow anaerobic fluidized-bed reactor.
    García-Calderón D; Buffière P; Moletta R; Elmaleh S
    Biotechnol Bioeng; 1998 Jan; 57(2):136-44. PubMed ID: 10099188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of cell adsorbent interactions on protein adsorption in expanded beds.
    Fernández-Lahore HM; Geilenkirchen S; Boldt K; Nagel A; Kula MR; Thömmes J
    J Chromatogr A; 2000 Mar; 873(2):195-208. PubMed ID: 10757297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of adsorbent porosity on performance of expanded bed chromatography of proteins.
    Gondkar S; Manudhane K; Amritkar N; Pai A; Lali A
    Biotechnol Prog; 2001; 17(3):522-9. PubMed ID: 11386874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of complex biological feedstock on the fluidization and bed stability in expanded bed adsorption.
    Fernandez-Lahore HM; Kleef R; Kula M; Thommes J
    Biotechnol Bioeng; 1999 Aug; 64(4):484-96. PubMed ID: 10397887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of the effect of in-bed sampling on expanded bed adsorption.
    Bruce LJ; Chase HA
    Bioseparation; 1999; 8(1-5):77-83. PubMed ID: 10734559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing adsorbent-biomass interactions during expanded bed adsorption onto ion exchangers utilizing surface energetics.
    Vennapusa R; Hunegnaw SM; Cabrera RB; Fernández-Lahore M
    J Chromatogr A; 2008 Feb; 1181(1-2):9-20. PubMed ID: 18199439
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Target control of cell disruption to minimize the biomass electrostatic adhesion during anion-exchange expanded bed adsorption.
    Lin DQ; Dong JN; Yao SJ
    Biotechnol Prog; 2007; 23(1):162-7. PubMed ID: 17269684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pilot scale recovery of recombinant annexin V from unclarified escherichia coli homogenate using expanded bed adsorption.
    Barnfield Frej AK; Hjorth R; Hammarström A
    Biotechnol Bioeng; 1994 Oct; 44(8):922-9. PubMed ID: 18618910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.