These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 12433380)

  • 1. How does attention attenuate target-distractor interference in vision?. Evidence from magnetoencephalographic recordings.
    Hopf JM; Boelmans K; Schoenfeld AM; Heinze HJ; Luck SJ
    Brain Res Cogn Brain Res; 2002 Dec; 15(1):17-29. PubMed ID: 12433380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Attention to features precedes attention to locations in visual search: evidence from electromagnetic brain responses in humans.
    Hopf JM; Boelmans K; Schoenfeld MA; Luck SJ; Heinze HJ
    J Neurosci; 2004 Feb; 24(8):1822-32. PubMed ID: 14985422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural mechanisms of surround attenuation and distractor competition in visual search.
    Boehler CN; Tsotsos JK; Schoenfeld MA; Heinze HJ; Hopf JM
    J Neurosci; 2011 Apr; 31(14):5213-24. PubMed ID: 21471356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrophysiological indices of target and distractor processing in visual search.
    Hickey C; Di Lollo V; McDonald JJ
    J Cogn Neurosci; 2009 Apr; 21(4):760-75. PubMed ID: 18564048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrophysiological correlates of early attentional feature selection and distractor filtering.
    Akyürek EG; Schubö A
    Biol Psychol; 2013 May; 93(2):269-78. PubMed ID: 23454277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatiotemporal dynamics of feature-based attention spread: evidence from combined electroencephalographic and magnetoencephalographic recordings.
    Stoppel CM; Boehler CN; Strumpf H; Krebs RM; Heinze HJ; Hopf JM; Schoenfeld MA
    J Neurosci; 2012 Jul; 32(28):9671-6. PubMed ID: 22787052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Rapid Capture of Attention by Rewarded Objects.
    Donohue SE; Hopf JM; Bartsch MV; Schoenfeld MA; Heinze HJ; Woldorff MG
    J Cogn Neurosci; 2016 Apr; 28(4):529-41. PubMed ID: 26741800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial filtering during visual search: evidence from human electrophysiology.
    Luck SJ; Hillyard SA
    J Exp Psychol Hum Percept Perform; 1994 Oct; 20(5):1000-14. PubMed ID: 7964526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrophysiological evidence of semantic interference in visual search.
    Telling AL; Kumar S; Meyer AS; Humphreys GW
    J Cogn Neurosci; 2010 Oct; 22(10):2212-25. PubMed ID: 19803680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distinct roles of the intraparietal sulcus and temporoparietal junction in attentional capture from distractor features: An individual differences approach.
    Painter DR; Dux PE; Mattingley JB
    Neuropsychologia; 2015 Jul; 74():50-62. PubMed ID: 25724234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of temporal predictability on exogenous attentional modulation of feedforward processing in the striate cortex.
    Dassanayake TL; Michie PT; Fulham R
    Int J Psychophysiol; 2016 Jul; 105():9-16. PubMed ID: 27114044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of feature-selective and spatial attention at different stages of visual processing.
    Andersen SK; Fuchs S; Müller MM
    J Cogn Neurosci; 2011 Jan; 23(1):238-46. PubMed ID: 19702461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Visual information processing and the mechanism of vision. Clinical application].
    Oguchi Y
    Nippon Ganka Gakkai Zasshi; 1998 Dec; 102(12):850-75. PubMed ID: 10025116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protecting visual short-term memory during maintenance: Attentional modulation of target and distractor representations.
    Vissers ME; Gulbinaite R; van den Bos T; Slagter HA
    Sci Rep; 2017 Jun; 7(1):4061. PubMed ID: 28642613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial suppression due to statistical regularities is driven by distractor suppression not by target activation.
    Failing M; Wang B; Theeuwes J
    Atten Percept Psychophys; 2019 Jul; 81(5):1405-1414. PubMed ID: 30868474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A model of active visual search with object-based attention guiding scan paths.
    Lanyon LJ; Denham SL
    Neural Netw; 2004; 17(5-6):873-97. PubMed ID: 15288904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feature priming and the capture of visual attention: linking two ambiguity resolution hypotheses.
    Hickey C; Olivers C; Meeter M; Theeuwes J
    Brain Res; 2011 Jan; 1370():175-84. PubMed ID: 21078309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of target-distractor relationships in guiding attention and the eyes in visual search.
    Becker SI
    J Exp Psychol Gen; 2010 May; 139(2):247-65. PubMed ID: 20438251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of top-down spatial attention in contingent attentional capture.
    Huang W; Su Y; Zhen Y; Qu Z
    Psychophysiology; 2016 May; 53(5):650-62. PubMed ID: 26879628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feature-guided attentional capture cannot be prevented by spatial filtering.
    Berggren N; Eimer M
    Biol Psychol; 2018 Apr; 134():1-8. PubMed ID: 29458180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.