BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 12433383)

  • 1. A computational approach to control in complex cognition.
    Polk TA; Simen P; Lewis RL; Freedman E
    Brain Res Cogn Brain Res; 2002 Dec; 15(1):71-83. PubMed ID: 12433383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of dorsolateral prefrontal cortex in inhibition mechanism: A study on cognitive reflection test and similar tasks through neuromodulation.
    Oldrati V; Patricelli J; Colombo B; Antonietti A
    Neuropsychologia; 2016 Oct; 91():499-508. PubMed ID: 27647553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A computational approach to prefrontal cortex, cognitive control and schizophrenia: recent developments and current challenges.
    Cohen JD; Braver TS; O'Reilly RC
    Philos Trans R Soc Lond B Biol Sci; 1996 Oct; 351(1346):1515-27. PubMed ID: 8941963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prefrontal and parietal activity is modulated by the rule complexity of inductive reasoning and can be predicted by a cognitive model.
    Jia X; Liang P; Shi L; Wang D; Li K
    Neuropsychologia; 2015 Jan; 66():67-74. PubMed ID: 25447072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lesions to right prefrontal cortex impair real-world planning through premature commitments.
    Goel V; Vartanian O; Bartolo A; Hakim L; Ferraro AM; Isella V; Appollonio I; Drei S; Nichelli P
    Neuropsychologia; 2013 Mar; 51(4):713-24. PubMed ID: 23266766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissociable stages of problem solving (II): first evidence for process-contingent temporal order of activation in dorsolateral prefrontal cortex.
    Ruh N; Rahm B; Unterrainer JM; Weiller C; Kaller CP
    Brain Cogn; 2012 Oct; 80(1):170-6. PubMed ID: 22445816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of right dorsolateral prefrontal cortex in ill-structured design cognition: an fMRI study.
    Gilbert SJ; Zamenopoulos T; Alexiou K; Johnson JH
    Brain Res; 2010 Feb; 1312():79-88. PubMed ID: 19948156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of frontal lobe lesions on goal achievement in the water jug task.
    Colvin MK; Dunbar K; Grafman J
    J Cogn Neurosci; 2001 Nov; 13(8):1129-47. PubMed ID: 11784450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prefrontal cortex and dynamic categorization tasks: representational organization and neuromodulatory control.
    O'Reilly RC; Noelle DC; Braver TS; Cohen JD
    Cereb Cortex; 2002 Mar; 12(3):246-57. PubMed ID: 11839599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The roles of prefrontal and posterior parietal cortex in algebra problem solving: a case of using cognitive modeling to inform neuroimaging data.
    Danker JF; Anderson JR
    Neuroimage; 2007 Apr; 35(3):1365-77. PubMed ID: 17355908
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spiking Phineas Gage: a neurocomputational theory of cognitive-affective integration in decision making.
    Wagar BM; Thagard P
    Psychol Rev; 2004 Jan; 111(1):67-79. PubMed ID: 14756586
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hierarchical Error Representation: A Computational Model of Anterior Cingulate and Dorsolateral Prefrontal Cortex.
    Alexander WH; Brown JW
    Neural Comput; 2015 Nov; 27(11):2354-410. PubMed ID: 26378874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of frontopolar cortex in subgoal processing during working memory.
    Braver TS; Bongiolatti SR
    Neuroimage; 2002 Mar; 15(3):523-36. PubMed ID: 11848695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prefrontal cortex and flexible cognitive control: rules without symbols.
    Rougier NP; Noelle DC; Braver TS; Cohen JD; O'Reilly RC
    Proc Natl Acad Sci U S A; 2005 May; 102(20):7338-43. PubMed ID: 15883365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hebbian Learning in a Random Network Captures Selectivity Properties of the Prefrontal Cortex.
    Lindsay GW; Rigotti M; Warden MR; Miller EK; Fusi S
    J Neurosci; 2017 Nov; 37(45):11021-11036. PubMed ID: 28986463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Set-shifting as a component process of goal-directed problem-solving.
    Cooper RP; Marsh V
    Psychol Res; 2016 Mar; 80(2):307-23. PubMed ID: 25686918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reward-dependent learning in neuronal networks for planning and decision making.
    Dehaene S; Changeux JP
    Prog Brain Res; 2000; 126():217-29. PubMed ID: 11105649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Task representations in neural networks trained to perform many cognitive tasks.
    Yang GR; Joglekar MR; Song HF; Newsome WT; Wang XJ
    Nat Neurosci; 2019 Feb; 22(2):297-306. PubMed ID: 30643294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Working Memory and Decision-Making in a Frontoparietal Circuit Model.
    Murray JD; Jaramillo J; Wang XJ
    J Neurosci; 2017 Dec; 37(50):12167-12186. PubMed ID: 29114071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering neural systems for high-level problem solving.
    Sylvester J; Reggia J
    Neural Netw; 2016 Jul; 79():37-52. PubMed ID: 27101230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.