These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 12433393)

  • 1. The representation of peripheral neural activity in the middle-latency evoked field of primary auditory cortex in humans(1).
    Rupp A; Uppenkamp S; Gutschalk A; Beucker R; Patterson RD; Dau T; Scherg M
    Hear Res; 2002 Dec; 174(1-2):19-31. PubMed ID: 12433393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Searching for the optimal stimulus eliciting auditory brainstem responses in humans.
    Fobel O; Dau T
    J Acoust Soc Am; 2004 Oct; 116(4 Pt 1):2213-22. PubMed ID: 15532653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of temporal asymmetry on the detection and perception of short chirps.
    Uppenkamp S; Fobel S; Patterson RD
    Hear Res; 2001 Aug; 158(1-2):71-83. PubMed ID: 11506939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The importance of cochlear processing for the formation of auditory brainstem and frequency following responses.
    Dau T
    J Acoust Soc Am; 2003 Feb; 113(2):936-50. PubMed ID: 12597187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuronal responses in cat primary auditory cortex to electrical cochlear stimulation. I. Intensity dependence of firing rate and response latency.
    Raggio MW; Schreiner CE
    J Neurophysiol; 1994 Nov; 72(5):2334-59. PubMed ID: 7884463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temporal resolution of the human primary auditory cortex in gap detection.
    Rupp A; Gutschalk A; Hack S; Scherg M
    Neuroreport; 2002 Dec; 13(17):2203-7. PubMed ID: 12488797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling auditory evoked brainstem responses to transient stimuli.
    Rønne FM; Dau T; Harte J; Elberling C
    J Acoust Soc Am; 2012 May; 131(5):3903-13. PubMed ID: 22559366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of binaural auditory brainstem responses and the binaural difference potential evoked by chirps and clicks.
    Riedel H; Kollmeier B
    Hear Res; 2002 Jul; 169(1-2):85-96. PubMed ID: 12121742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deconvolution of 40 Hz steady-state fields reveals two overlapping source activities of the human auditory cortex.
    Gutschalk A; Mase R; Roth R; Ille N; Rupp A; Hähnel S; Picton TW; Scherg M
    Clin Neurophysiol; 1999 May; 110(5):856-68. PubMed ID: 10400199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Localization of primary auditory cortex in humans by magnetoencephalography.
    Lütkenhöner B; Krumbholz K; Lammertmann C; Seither-Preisler A; Steinsträter O; Patterson RD
    Neuroimage; 2003 Jan; 18(1):58-66. PubMed ID: 12507443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Cortical mechanisms of auditive perception in man: contribution of cerebral potentials and evoked magnetic fields by auditive stimulations].
    Liégeois-Chauvel C; Laguitton V; Badier JM; Schwartz D; Chauvel P
    Rev Neurol (Paris); 1995; 151(8-9):495-504. PubMed ID: 8578070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional connections between auditory cortex on Heschl's gyrus and on the lateral superior temporal gyrus in humans.
    Brugge JF; Volkov IO; Garell PC; Reale RA; Howard MA
    J Neurophysiol; 2003 Dec; 90(6):3750-63. PubMed ID: 12968011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-synchrony cochlear compound action potentials evoked by rising frequency-swept tone bursts.
    Shore SE; Nuttall AL
    J Acoust Soc Am; 1985 Oct; 78(4):1286-95. PubMed ID: 3840500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Auditory brainstem responses with optimized chirp signals compensating basilar-membrane dispersion.
    Dau T; Wegner O; Mellert V; Kollmeier B
    J Acoust Soc Am; 2000 Mar; 107(3):1530-40. PubMed ID: 10738807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The onset and post-onset auditory responses of cochlear nucleus neurons are modulated differently by cortical activation.
    Liu X; Zhang O; Qi J; Chen A; Hu K; Yan J
    Hear Res; 2019 Mar; 373():96-102. PubMed ID: 30640070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Representation of auditory-filter phase characteristics in the cortex of human listeners.
    Rupp A; Sieroka N; Gutschalk A; Dau T
    J Neurophysiol; 2008 Mar; 99(3):1152-62. PubMed ID: 18184891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast temporal interactions in human auditory cortex.
    Rupp A; Hack S; Gutschalk A; Schneider P; Picton TW; Stippich C; Scherg M
    Neuroreport; 2000 Nov; 11(17):3731-6. PubMed ID: 11117481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human auditory middle latency responses: influence of stimulus type and intensity.
    Borgmann C; Ross B; Draganova R; Pantev C
    Hear Res; 2001 Aug; 158(1-2):57-64. PubMed ID: 11506937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Healthy-side dominance of middle- and long-latency neuromagnetic fields in idiopathic sudden sensorineural hearing loss.
    Li LP; Shiao AS; Chen LF; Niddam DM; Chang SY; Lien CF; Lee SK; Hsieh JC
    Eur J Neurosci; 2006 Aug; 24(3):937-46. PubMed ID: 16930421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of cochlear traveling wave and neural adaptation on auditory brainstem responses.
    Junius D; Dau T
    Hear Res; 2005 Jul; 205(1-2):53-67. PubMed ID: 15953515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.