These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 12433851)

  • 1. Mechanisms of surface-tension-induced epithelial cell damage in a model of pulmonary airway reopening.
    Bilek AM; Dee KC; Gaver DP
    J Appl Physiol (1985); 2003 Feb; 94(2):770-83. PubMed ID: 12433851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of airway diameter and cell confluence on epithelial cell injury in an in vitro model of airway reopening.
    Yalcin HC; Perry SF; Ghadiali SN
    J Appl Physiol (1985); 2007 Nov; 103(5):1796-807. PubMed ID: 17673567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pressure gradient, not exposure duration, determines the extent of epithelial cell damage in a model of pulmonary airway reopening.
    Kay SS; Bilek AM; Dee KC; Gaver DP
    J Appl Physiol (1985); 2004 Jul; 97(1):269-76. PubMed ID: 15004001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epithelial cell deformation during surfactant-mediated airway reopening: a theoretical model.
    Naire S; Jensen OE
    J Appl Physiol (1985); 2005 Aug; 99(2):458-71. PubMed ID: 15802368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epithelium damage and protection during reopening of occluded airways in a physiologic microfluidic pulmonary airway model.
    Tavana H; Zamankhan P; Christensen PJ; Grotberg JB; Takayama S
    Biomed Microdevices; 2011 Aug; 13(4):731-42. PubMed ID: 21487664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Image-based finite element modeling of alveolar epithelial cell injury during airway reopening.
    Dailey HL; Ricles LM; Yalcin HC; Ghadiali SN
    J Appl Physiol (1985); 2009 Jan; 106(1):221-32. PubMed ID: 19008489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An estimation of mechanical stress on alveolar walls during repetitive alveolar reopening and closure.
    Chen ZL; Song YL; Hu ZY; Zhang S; Chen YZ
    J Appl Physiol (1985); 2015 Aug; 119(3):190-201. PubMed ID: 26023222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An investigation of pulmonary surfactant physicochemical behavior under airway reopening conditions.
    Ghadiali SN; Gaver DP
    J Appl Physiol (1985); 2000 Feb; 88(2):493-506. PubMed ID: 10658016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The unusual symmetric reopening effect induced by pulmonary surfactant.
    Yamaguchi E; Giannetti MJ; Van Houten MJ; Forouzan O; Shevkoplyas SS; Gaver DP
    J Appl Physiol (1985); 2014 Mar; 116(6):635-44. PubMed ID: 24458752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inositol-trisphosphate reduces alveolar apoptosis and pulmonary edema in neonatal lung injury.
    Preuss S; Stadelmann S; Omam FD; Scheiermann J; Winoto-Morbach S; von Bismarck P; Knerlich-Lukoschus F; Lex D; Adam-Klages S; Wesch D; Held-Feindt J; Uhlig S; Schütze S; Krause MF
    Am J Respir Cell Mol Biol; 2012 Aug; 47(2):158-69. PubMed ID: 22403805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanics of liquid-epithelium interactions in pulmonary airways.
    Ghadiali SN; Gaver DP
    Respir Physiol Neurobiol; 2008 Nov; 163(1-3):232-43. PubMed ID: 18511356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling airflow-related shear stress during heterogeneous constriction and mechanical ventilation.
    Nucci G; Suki B; Lutchen K
    J Appl Physiol (1985); 2003 Jul; 95(1):348-56. PubMed ID: 12651864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physicochemical effects enhance surfactant transport in pulsatile motion of a semi-infinite bubble.
    Pillert JE; Gaver DP
    Biophys J; 2009 Jan; 96(1):312-27. PubMed ID: 18849416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction between airway lining fluid forces and parenchymal tethering during pulmonary airway reopening.
    Perun ML; Gaver DP
    J Appl Physiol (1985); 1995 Nov; 79(5):1717-28. PubMed ID: 8594034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atelectrauma disrupts pulmonary epithelial barrier integrity and alters the distribution of tight junction proteins ZO-1 and claudin 4.
    Jacob AM; Gaver DP
    J Appl Physiol (1985); 2012 Nov; 113(9):1377-87. PubMed ID: 22898551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical ventilation of isolated rat lungs changes the structure and biophysical properties of surfactant.
    Veldhuizen RA; Welk B; Harbottle R; Hearn S; Nag K; Petersen N; Possmayer F
    J Appl Physiol (1985); 2002 Mar; 92(3):1169-75. PubMed ID: 11842055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanotransduction in the lungs.
    Spieth PM; Bluth T; Gama De Abreu M; Bacelis A; Goetz AE; Kiefmann R
    Minerva Anestesiol; 2014 Aug; 80(8):933-41. PubMed ID: 24299920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An investigation of the influence of cell topography on epithelial mechanical stresses during pulmonary airway reopening.
    Jacob AM; Gaver DP
    Phys Fluids (1994); 2005; 17(3):31502. PubMed ID: 23745044
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pulmonary airway reopening: effects of non-Newtonian fluid viscosity.
    Low HT; Chew YT; Zhou CW
    J Biomech Eng; 1997 Aug; 119(3):298-308. PubMed ID: 9285343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanical aspects of compliant airways due to mechanical ventilation.
    Koombua K; Pidaparti RM; Longest PW; Ward KR
    Mol Cell Biomech; 2009 Dec; 6(4):203-16. PubMed ID: 19899444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.