These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 12433917)
1. The role of the hydrophobic distal heme pocket of CooA in ligand sensing and response. Youn H; Kerby RL; Roberts GP J Biol Chem; 2003 Jan; 278(4):2333-40. PubMed ID: 12433917 [TBL] [Abstract][Full Text] [Related]
2. The C-helix in CooA rolls upon CO binding to ferrous heme. Yamashita T; Hoashi Y; Tomisugi Y; Ishikawa Y; Uno T J Biol Chem; 2004 Nov; 279(45):47320-5. PubMed ID: 15326178 [TBL] [Abstract][Full Text] [Related]
3. Analysis of the L116K variant of CooA, the heme-containing CO sensor, suggests the presence of an unusual heme ligand resulting in novel activity. Youn H; Kerby RL; Thorsteinsson MV; Clark RW; Burstyn JN; Roberts GP J Biol Chem; 2002 Sep; 277(37):33616-23. PubMed ID: 12121986 [TBL] [Abstract][Full Text] [Related]
4. Electronic absorption, EPR, and resonance raman spectroscopy of CooA, a CO-sensing transcription activator from R. rubrum, reveals a five-coordinate NO-heme. Reynolds MF; Parks RB; Burstyn JN; Shelver D; Thorsteinsson MV; Kerby RL; Roberts GP; Vogel KM; Spiro TG Biochemistry; 2000 Jan; 39(2):388-96. PubMed ID: 10631000 [TBL] [Abstract][Full Text] [Related]
5. Effect of DNA binding on geminate CO recombination kinetics in CO-sensing transcription factor CooA. Benabbas A; Karunakaran V; Youn H; Poulos TL; Champion PM J Biol Chem; 2012 Jun; 287(26):21729-40. PubMed ID: 22544803 [TBL] [Abstract][Full Text] [Related]
6. Identification of two important heme site residues (cysteine 75 and histidine 77) in CooA, the CO-sensing transcription factor of Rhodospirillum rubrum. Shelver D; Thorsteinsson MV; Kerby RL; Chung SY; Roberts GP; Reynolds MF; Parks RB; Burstyn JN Biochemistry; 1999 Mar; 38(9):2669-78. PubMed ID: 10052937 [TBL] [Abstract][Full Text] [Related]
7. DNA binding by an imidazole-sensing CooA variant is dependent on the heme redox state. Clark RW; Youn H; Lee AJ; Roberts GP; Burstyn JN J Biol Inorg Chem; 2007 Feb; 12(2):139-46. PubMed ID: 17082920 [TBL] [Abstract][Full Text] [Related]
8. Modeling proline ligation in the heme-dependent CO sensor, CooA, using small-molecule analogs. Pinkert JC; Clark RW; Burstyn JN J Biol Inorg Chem; 2006 Jul; 11(5):642-50. PubMed ID: 16724227 [TBL] [Abstract][Full Text] [Related]
9. Redox-controlled ligand exchange of the heme in the CO-sensing transcriptional activator CooA. Aono S; Ohkubo K; Matsuo T; Nakajima H J Biol Chem; 1998 Oct; 273(40):25757-64. PubMed ID: 9748246 [TBL] [Abstract][Full Text] [Related]
10. Roles of heme axial ligands in the regulation of CO binding to CooA. Yamashita T; Hoashi Y; Watanabe K; Tomisugi Y; Ishikawa Y; Uno T J Biol Chem; 2004 May; 279(20):21394-400. PubMed ID: 15026411 [TBL] [Abstract][Full Text] [Related]
11. The heme pocket afforded by Gly117 is crucial for proper heme ligation and activity of CooA. Youn H; Kerby RL; Thorsteinsson MV; Conrad M; Staples CR; Serate J; Beack J; Roberts GP J Biol Chem; 2001 Nov; 276(45):41603-10. PubMed ID: 11551932 [TBL] [Abstract][Full Text] [Related]
13. CO sensing and regulation of gene expression by the transcriptional activator CooA. Aono S; Honma Y; Ohkubo K; Tawara T; Kamiya T; Nakajima H J Inorg Biochem; 2000 Nov; 82(1-4):51-6. PubMed ID: 11132638 [TBL] [Abstract][Full Text] [Related]
14. Roles of the heme and heme ligands in the activation of CooA, the CO-sensing transcriptional activator. Youn H; Conrad M; Chung SY; Roberts GP Biochem Biophys Res Commun; 2006 Sep; 348(2):345-50. PubMed ID: 16889751 [TBL] [Abstract][Full Text] [Related]
15. Heme environmental structure of CooA is modulated by the target DNA binding. Evidence from resonance Raman spectroscopy and CO rebinding kinetics. Uchida T; Ishikawa H; Takahashi S; Ishimori K; Morishima I; Ohkubo K; Nakajima H; Aono S J Biol Chem; 1998 Aug; 273(32):19988-92. PubMed ID: 9685335 [TBL] [Abstract][Full Text] [Related]
16. Resonance Raman evidence for a novel charge relay activation mechanism of the CO-dependent heme protein transcription factor CooA. Vogel KM; Spiro TG; Shelver D; Thorsteinsson MV; Roberts GP Biochemistry; 1999 Mar; 38(9):2679-87. PubMed ID: 10052938 [TBL] [Abstract][Full Text] [Related]
17. Evidence for displacements of the C-helix by CO ligation and DNA binding to CooA revealed by UV resonance Raman spectroscopy. Kubo M; Inagaki S; Yoshioka S; Uchida T; Mizutani Y; Aono S; Kitagawa T J Biol Chem; 2006 Apr; 281(16):11271-8. PubMed ID: 16439368 [TBL] [Abstract][Full Text] [Related]
18. Activation mechanism of the CO sensor CooA. Mutational and resonance Raman spectroscopic studies. Coyle CM; Puranik M; Youn H; Nielsen SB; Williams RD; Kerby RL; Roberts GP; Spiro TG J Biol Chem; 2003 Sep; 278(37):35384-93. PubMed ID: 12796503 [TBL] [Abstract][Full Text] [Related]
19. Investigation of the role of the N-terminal proline, the distal heme ligand in the CO sensor CooA. Clark RW; Youn H; Parks RB; Cherney MM; Roberts GP; Burstyn JN Biochemistry; 2004 Nov; 43(44):14149-60. PubMed ID: 15518565 [TBL] [Abstract][Full Text] [Related]
20. A model theoretical study on ligand exchange reactions of CooA. Ishida T; Aono S Phys Chem Chem Phys; 2013 Apr; 15(16):6139-48. PubMed ID: 23511331 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]