These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 12433927)

  • 1. A stable human p53 heterotetramer based on constructive charge interactions within the tetramerization domain.
    Brokx RD; Bolewska-Pedyczak E; Gariépy J
    J Biol Chem; 2003 Jan; 278(4):2327-32. PubMed ID: 12433927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tandem dimerization of the human p53 tetramerization domain stabilizes a primary dimer intermediate and dramatically enhances its oligomeric stability.
    Poon GM; Brokx RD; Sung M; Gariépy J
    J Mol Biol; 2007 Jan; 365(4):1217-31. PubMed ID: 17113101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversible amyloid formation by the p53 tetramerization domain and a cancer-associated mutant.
    Lee AS; Galea C; DiGiammarino EL; Jun B; Murti G; Ribeiro RC; Zambetti G; Schultz CP; Kriwacki RW
    J Mol Biol; 2003 Mar; 327(3):699-709. PubMed ID: 12634062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel mechanism of tumorigenesis involving pH-dependent destabilization of a mutant p53 tetramer.
    DiGiammarino EL; Lee AS; Cadwell C; Zhang W; Bothner B; Ribeiro RC; Zambetti G; Kriwacki RW
    Nat Struct Biol; 2002 Jan; 9(1):12-6. PubMed ID: 11753428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A meanfield approach to the thermodynamics of a protein-solvent system with application to the oligomerization of the tumor suppressor p53.
    Noolandi J; Davison TS; Volkel AR; Nie X; Kay C; Arrowsmith CH
    Proc Natl Acad Sci U S A; 2000 Aug; 97(18):9955-60. PubMed ID: 10944184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamic analysis of the structural stability of the tetrameric oligomerization domain of p53 tumor suppressor.
    Johnson CR; Morin PE; Arrowsmith CH; Freire E
    Biochemistry; 1995 Apr; 34(16):5309-16. PubMed ID: 7727392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disruption of an intermonomer salt bridge in the p53 tetramerization domain results in an increased propensity to form amyloid fibrils.
    Galea C; Bowman P; Kriwacki RW
    Protein Sci; 2005 Dec; 14(12):2993-3003. PubMed ID: 16260757
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solution structure of the tetrameric minimum transforming domain of p53.
    Lee W; Harvey TS; Yin Y; Yau P; Litchfield D; Arrowsmith CH
    Nat Struct Biol; 1994 Dec; 1(12):877-90. PubMed ID: 7773777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solvent-exposed residues located in the beta-sheet modulate the stability of the tetramerization domain of p53--a structural and combinatorial approach.
    Mora P; Carbajo RJ; Pineda-Lucena A; Sánchez del Pino MM; Pérez-Payá E
    Proteins; 2008 Jun; 71(4):1670-85. PubMed ID: 18076077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nine hydrophobic side chains are key determinants of the thermodynamic stability and oligomerization status of tumour suppressor p53 tetramerization domain.
    Mateu MG; Fersht AR
    EMBO J; 1998 May; 17(10):2748-58. PubMed ID: 9582268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of oligomeric stability by covalent linkage and its application to the human p53tet domain: thermodynamics and biological implications.
    Poon GM
    Biochem Soc Trans; 2007 Dec; 35(Pt 6):1574-8. PubMed ID: 18031269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and functionality of a designed p53 dimer.
    Davison TS; Nie X; Ma W; Lin Y; Kay C; Benchimol S; Arrowsmith CH
    J Mol Biol; 2001 Mar; 307(2):605-17. PubMed ID: 11254385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal unfolding simulations of a multimeric protein--transition state and unfolding pathways.
    Duan J; Nilsson L
    Proteins; 2005 May; 59(2):170-82. PubMed ID: 15723359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cancer-associated p53 tetramerization domain mutants: quantitative analysis reveals a low threshold for tumor suppressor inactivation.
    Kamada R; Nomura T; Anderson CW; Sakaguchi K
    J Biol Chem; 2011 Jan; 286(1):252-8. PubMed ID: 20978130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of tetramerization in p53 function.
    Chène P
    Oncogene; 2001 May; 20(21):2611-7. PubMed ID: 11420672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutually compensatory mutations during evolution of the tetramerization domain of tumor suppressor p53 lead to impaired hetero-oligomerization.
    Mateu MG; Fersht AR
    Proc Natl Acad Sci U S A; 1999 Mar; 96(7):3595-9. PubMed ID: 10097082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of folding and assembly of a small tetrameric protein domain from tumor suppressor p53.
    Mateu MG; Sánchez Del Pino MM; Fersht AR
    Nat Struct Biol; 1999 Feb; 6(2):191-8. PubMed ID: 10048932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of the p53 core domain dimer bound to DNA.
    Ho WC; Fitzgerald MX; Marmorstein R
    J Biol Chem; 2006 Jul; 281(29):20494-502. PubMed ID: 16717092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization and importance of the dimer interface of human calcium-activated nucleotidase.
    Yang M; Horii K; Herr AB; Kirley TL
    Biochemistry; 2008 Jan; 47(2):771-8. PubMed ID: 18067325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-Molecule characterization of oligomerization kinetics and equilibria of the tumor suppressor p53.
    Rajagopalan S; Huang F; Fersht AR
    Nucleic Acids Res; 2011 Mar; 39(6):2294-303. PubMed ID: 21097469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.