BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 12433972)

  • 1. Force enhancement following muscle stretch of electrically stimulated and voluntarily activated human adductor pollicis.
    Lee HD; Herzog W
    J Physiol; 2002 Nov; 545(1):321-30. PubMed ID: 12433972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Force depression following muscle shortening of voluntarily activated and electrically stimulated human adductor pollicis.
    Lee HD; Herzog W
    J Physiol; 2003 Sep; 551(Pt 3):993-1003. PubMed ID: 12815187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation-induced force enhancement in human adductor pollicis.
    Oskouei AE; Herzog W
    J Electromyogr Kinesiol; 2009 Oct; 19(5):821-8. PubMed ID: 18430589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Observations on force enhancement in submaximal voluntary contractions of human adductor pollicis muscle.
    Oskouei AE; Herzog W
    J Appl Physiol (1985); 2005 Jun; 98(6):2087-95. PubMed ID: 15705725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Force enhancement during and following muscle stretch of maximal voluntarily activated human quadriceps femoris.
    Hahn D; Seiberl W; Schwirtz A
    Eur J Appl Physiol; 2007 Aug; 100(6):701-9. PubMed ID: 17476525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Force depression following muscle shortening in sub-maximal voluntary contractions of human adductor pollicis.
    Rousanoglou EN; Oskouei AE; Herzog W
    J Biomech; 2007; 40(1):1-8. PubMed ID: 16443230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Force enhancement above the initial isometric force on the descending limb of the force-length relationship.
    Schachar R; Herzog W; Leonard TR
    J Biomech; 2002 Oct; 35(10):1299-306. PubMed ID: 12231275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The dependence of force enhancement on activation in human adductor pollicis.
    Oskouei AE; Herzog W
    Eur J Appl Physiol; 2006 Sep; 98(1):22-9. PubMed ID: 16850317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stretch-induced, steady-state force enhancement in single skeletal muscle fibers exceeds the isometric force at optimum fiber length.
    Rassier DE; Herzog W; Wakeling J; Syme DA
    J Biomech; 2003 Sep; 36(9):1309-16. PubMed ID: 12893039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Force-time history effects in voluntary contractions of human tibialis anterior.
    Tilp M; Steib S; Herzog W
    Eur J Appl Physiol; 2009 May; 106(2):159-66. PubMed ID: 19214557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Residual force enhancement exceeds the isometric force at optimal sarcomere length for optimized stretch conditions.
    Lee EJ; Herzog W
    J Appl Physiol (1985); 2008 Aug; 105(2):457-62. PubMed ID: 18499781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Force enhancement at different levels of voluntary contraction in human adductor pollicis.
    Oskouei AE; Herzog W
    Eur J Appl Physiol; 2006 Jun; 97(3):280-7. PubMed ID: 16596318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Force depression following a stretch-shortening cycle depends on the amount of residual force enhancement established in the initial stretch phase.
    Fortuna R; Goecking T; Seiberl W; Herzog W
    Physiol Rep; 2019 Aug; 7(16):e14188. PubMed ID: 31420953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Force enhancement following stretching of skeletal muscle: a new mechanism.
    Herzog W; Leonard TR
    J Exp Biol; 2002 May; 205(Pt 9):1275-83. PubMed ID: 11948204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Residual force enhancement in human skeletal muscles: A systematic review and meta-analysis.
    de Campos D; Orssatto LBR; Trajano GS; Herzog W; Fontana HB
    J Sport Health Sci; 2022 Jan; 11(1):94-103. PubMed ID: 34062271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of muscle stretching and shortening on isometric forces on the descending limb of the force-length relationship.
    Schachar R; Herzog W; Leonard TR
    J Biomech; 2004 Jun; 37(6):917-26. PubMed ID: 15111079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of passive structures in force enhancement of skeletal muscles following active stretch.
    Herzog W; Leonard TR
    J Biomech; 2005 Mar; 38(3):409-15. PubMed ID: 15652538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shortening-induced depression of voluntary force in unfatigued and fatigued human adductor pollicis muscle.
    de Ruiter CJ; de Haan A
    J Appl Physiol (1985); 2003 Jan; 94(1):69-74. PubMed ID: 12391074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Residual force enhancement following shortening is speed-dependent.
    Fortuna R; Power GA; Mende E; Seiberl W; Herzog W
    Sci Rep; 2016 Feb; 5():21513. PubMed ID: 26869508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Force enhancement after stretch of isolated myofibrils is increased by sarcomere length non-uniformities.
    Haeger RM; Rassier DE
    Sci Rep; 2020 Dec; 10(1):21590. PubMed ID: 33299041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.