BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

629 related articles for article (PubMed ID: 12434152)

  • 21. Runx2 and Runx3 are essential for chondrocyte maturation, and Runx2 regulates limb growth through induction of Indian hedgehog.
    Yoshida CA; Yamamoto H; Fujita T; Furuichi T; Ito K; Inoue K; Yamana K; Zanma A; Takada K; Ito Y; Komori T
    Genes Dev; 2004 Apr; 18(8):952-63. PubMed ID: 15107406
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Canonical Wnt/beta-catenin signaling prevents osteoblasts from differentiating into chondrocytes.
    Hill TP; Später D; Taketo MM; Birchmeier W; Hartmann C
    Dev Cell; 2005 May; 8(5):727-38. PubMed ID: 15866163
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Groucho homologue Grg5 interacts with the transcription factor Runx2-Cbfa1 and modulates its activity during postnatal growth in mice.
    Wang W; Wang YG; Reginato AM; Glotzer DJ; Fukai N; Plotkina S; Karsenty G; Olsen BR
    Dev Biol; 2004 Jun; 270(2):364-81. PubMed ID: 15183720
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular cloning and characterization of PEBP2 beta, the heterodimeric partner of a novel Drosophila runt-related DNA binding protein PEBP2 alpha.
    Ogawa E; Inuzuka M; Maruyama M; Satake M; Naito-Fujimoto M; Ito Y; Shigesada K
    Virology; 1993 May; 194(1):314-31. PubMed ID: 8386878
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hand2 controls osteoblast differentiation in the branchial arch by inhibiting DNA binding of Runx2.
    Funato N; Chapman SL; McKee MD; Funato H; Morris JA; Shelton JM; Richardson JA; Yanagisawa H
    Development; 2009 Feb; 136(4):615-25. PubMed ID: 19144722
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Oncogenic potential of the RUNX gene family: 'overview'.
    Ito Y
    Oncogene; 2004 May; 23(24):4198-208. PubMed ID: 15156173
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 1,25-(OH)2-vitamin D3 suppresses the bone-related Runx2/Cbfa1 gene promoter.
    Drissi H; Pouliot A; Koolloos C; Stein JL; Lian JB; Stein GS; van Wijnen AJ
    Exp Cell Res; 2002 Apr; 274(2):323-33. PubMed ID: 11900492
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Large fontanelles are a shared feature of haploinsufficiency of RUNX2 and its co-activator CBFB.
    Goto T; Aramaki M; Yoshihashi H; Nishimura G; Hasegawa Y; Takahashi T; Ishii T; Fukushima Y; Kosaki K
    Congenit Anom (Kyoto); 2004 Dec; 44(4):225-9. PubMed ID: 15566413
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prostate cancer expression of runt-domain transcription factor Runx2, a key regulator of osteoblast differentiation and function.
    Brubaker KD; Vessella RL; Brown LG; Corey E
    Prostate; 2003 Jun; 56(1):13-22. PubMed ID: 12746842
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Mechanism of transcriptional regulation by Runx2 in osteoblasts].
    Komori T
    Clin Calcium; 2006 May; 16(5):801-7. PubMed ID: 16679622
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulation of skeletal development by the Runx family of transcription factors.
    Komori T
    J Cell Biochem; 2005 Jun; 95(3):445-53. PubMed ID: 15786491
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Runt-related gene 2 in endothelial cells: inducible expression and specific regulation of cell migration and invasion.
    Sun L; Vitolo M; Passaniti A
    Cancer Res; 2001 Jul; 61(13):4994-5001. PubMed ID: 11431332
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The protooncogene product, PEBP2beta/CBFbeta, is mainly located in the cytoplasm and has an affinity with cytoskeletal structures.
    Tanaka Y; Watanabe T; Chiba N; Niki M; Kuroiwa Y; Nishihira T; Satomi S; Ito Y; Satake M
    Oncogene; 1997 Aug; 15(6):677-83. PubMed ID: 9264408
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regulation of bone development and extracellular matrix protein genes by RUNX2.
    Komori T
    Cell Tissue Res; 2010 Jan; 339(1):189-95. PubMed ID: 19649655
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Runx2 deficiency in chondrocytes causes adipogenic changes in vitro.
    Enomoto H; Furuichi T; Zanma A; Yamana K; Yoshida C; Sumitani S; Yamamoto H; Enomoto-Iwamoto M; Iwamoto M; Komori T
    J Cell Sci; 2004 Jan; 117(Pt 3):417-25. PubMed ID: 14702386
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The suppressive effect of myeloid Elf-1-like factor (MEF) in osteogenic differentiation.
    Kim YJ; Kim BG; Lee SJ; Lee HK; Lee SH; Ryoo HM; Cho JY
    J Cell Physiol; 2007 Apr; 211(1):253-60. PubMed ID: 17167770
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regulation of osteoblast differentiation by transcription factors.
    Komori T
    J Cell Biochem; 2006 Dec; 99(5):1233-9. PubMed ID: 16795049
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Wnt induction of chondrocyte hypertrophy through the Runx2 transcription factor.
    Dong YF; Soung do Y; Schwarz EM; O'Keefe RJ; Drissi H
    J Cell Physiol; 2006 Jul; 208(1):77-86. PubMed ID: 16575901
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Skeletogenesis in Xenopus tropicalis: characteristic bone development in an anuran amphibian.
    Miura S; Hanaoka K; Togashi S
    Bone; 2008 Nov; 43(5):901-9. PubMed ID: 18692165
    [TBL] [Abstract][Full Text] [Related]  

  • 40. MyoD enhances BMP7-induced osteogenic differentiation of myogenic cell cultures.
    Komaki M; Asakura A; Rudnicki MA; Sodek J; Cheifetz S
    J Cell Sci; 2004 Mar; 117(Pt 8):1457-68. PubMed ID: 15020674
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 32.