These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 12435040)

  • 1. Acoustic orientation via sequential comparison in an ultrasonic moth.
    Greenfield MD; Tourtellot MK; Tillberg C; Bell WJ; Prins N
    Naturwissenschaften; 2002 Aug; 89(8):376-80. PubMed ID: 12435040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution of directional hearing in moths via conversion of bat detection devices to asymmetric pressure gradient receivers.
    Reid A; Marin-Cudraz T; Windmill JF; Greenfield MD
    Proc Natl Acad Sci U S A; 2016 Nov; 113(48):E7740-E7748. PubMed ID: 27849607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of the binaural auditory filter in the human brain.
    Soeta Y; Nakagawa S
    Neuroreport; 2007 Dec; 18(18):1939-43. PubMed ID: 18007191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The start of phonotactic walking in the fly Ormia ochracea: a kinematic study.
    Mason AC; Lee N; Oshinsky ML
    J Exp Biol; 2005 Dec; 208(Pt 24):4699-708. PubMed ID: 16326951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The contribution of tympanic transmission to fine temporal signal evaluation in an ultrasonic moth.
    Rodríguez RL; Schul J; Cocroft RB; Greenfield MD
    J Exp Biol; 2005 Nov; 208(Pt 21):4159-65. PubMed ID: 16244174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sound localization under perturbed binaural hearing.
    Van Wanrooij MM; Van Opstal AJ
    J Neurophysiol; 2007 Jan; 97(1):715-26. PubMed ID: 17065242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Encoding of virtual acoustic space stimuli by neurons in ferret primary auditory cortex.
    Mrsic-Flogel TD; King AJ; Schnupp JW
    J Neurophysiol; 2005 Jun; 93(6):3489-503. PubMed ID: 15659534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 'Binaural echo disparity' as a potential indicator of object orientation and cue for object recognition in echolocating nectar-feeding bats.
    Holderied MW; von Helversen O
    J Exp Biol; 2006 Sep; 209(Pt 17):3457-68. PubMed ID: 16916981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3-D-orientation with the octavolateralis system.
    Bleckmann H
    J Physiol Paris; 2004; 98(1-3):53-65. PubMed ID: 15477022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaural temporal and coherence cues jointly contribute to successful sound movement perception and activation of parietal cortex.
    Zimmer U; Macaluso E
    Neuroimage; 2009 Jul; 46(4):1200-8. PubMed ID: 19303934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Directional sensitivity of neurons in the primary auditory (AI) cortex: effects of sound-source intensity level.
    Reale RA; Jenison RL; Brugge JF
    J Neurophysiol; 2003 Feb; 89(2):1024-38. PubMed ID: 12574478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of center frequency on binaural auditory filter bandwidth in the human brain.
    Soeta Y; Shimokura R; Nakagawa S
    Neuroreport; 2008 Nov; 19(17):1709-13. PubMed ID: 18841088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative study of fixed time versus intensity trade and fixed intensity versus time trade tests in sound lateralization.
    Dekio-Hotta S; Kaga K
    Auris Nasus Larynx; 2006 Sep; 33(3):265-9. PubMed ID: 16431062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Loudness constancy with varying sound source distance.
    Zahorik P; Wightman FL
    Nat Neurosci; 2001 Jan; 4(1):78-83. PubMed ID: 11135648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectral cues explain illusory elevation effects with stereo sounds in cats.
    Tollin DJ; Yin TC
    J Neurophysiol; 2003 Jul; 90(1):525-30. PubMed ID: 12843315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Inhibitory-excitatory interactions in the fields of aural neurons selective to the direction of spectral contrast movement].
    Malinina ES; Vartanian IA
    Zh Evol Biokhim Fiziol; 2003; 39(3):260-70. PubMed ID: 12973910
    [No Abstract]   [Full Text] [Related]  

  • 17. Temperature coupling as an emergent property: parallel thermal effects on male song and female response do not contribute to species recognition in an acoustic moth.
    Greenfield MD; Medlock C
    Evolution; 2007 Jul; 61(7):1590-9. PubMed ID: 17598742
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acoustic cues underlying auditory distance in barn owls.
    Kim DO; Moiseff A; Turner JB; Gull J
    Acta Otolaryngol; 2008 Apr; 128(4):382-7. PubMed ID: 18368570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of intensity and location on sound location discrimination in macaque monkeys.
    Recanzone GH; Beckerman NS
    Hear Res; 2004 Dec; 198(1-2):116-24. PubMed ID: 15567608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of sound localization mechanisms in the mongolian gerbil is shaped by early acoustic experience.
    Seidl AH; Grothe B
    J Neurophysiol; 2005 Aug; 94(2):1028-36. PubMed ID: 15829592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.