These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 12435213)

  • 1. Telemetry provides new insights into entrainment of activity wheel circadian rhythms and the role of body temperature in the development of ulcers in the activity-stress paradigm.
    Murphy HM; Wideman CH; Aquila LA; Nadzam GR
    Integr Physiol Behav Sci; 2002; 37(3):228-41. PubMed ID: 12435213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A laboratory animal model of human shift work.
    Murphy HM; Wideman CH; Nadzam GR
    Integr Physiol Behav Sci; 2003; 38(4):316-28. PubMed ID: 15119380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Restricted wheel access following a light cycle inversion slows re-entrainment without internal desynchrony as measured in Per2Luc mice.
    Castillo C; Molyneux P; Carlson R; Harrington ME
    Neuroscience; 2011 May; 182():169-76. PubMed ID: 21392557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vasopressin deficiency provides evidence for separate circadian oscillators of activity and temperature.
    Wideman CH; Murphy HM; Nadzam GR
    Peptides; 2000 Jun; 21(6):811-6. PubMed ID: 10959002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vasopressin deficiency and circadian rhythms during food-restriction stress.
    Murphy HM; Wideman CH; Nadzam GR
    Peptides; 1993; 14(6):1215-20. PubMed ID: 8134303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase-advanced daily rhythms of melatonin, body temperature, and locomotor activity in food-restricted rats fed during daytime.
    Challet E; Pévet P; Vivien-Roels B; Malan A
    J Biol Rhythms; 1997 Feb; 12(1):65-79. PubMed ID: 9104691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of three-hour restricted food access during the light period on circadian rhythms of temperature, locomotor activity, and heart rate in rats.
    Boulamery-Velly A; Simon N; Vidal J; Mouchet J; Bruguerolle B
    Chronobiol Int; 2005; 22(3):489-98. PubMed ID: 16076649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of wire-bottom caging on heart rate, activity and body temperature in telemetry-implanted rats.
    Giral M; García-Olmo DC; Kramer K
    Lab Anim; 2011 Oct; 45(4):247-53. PubMed ID: 21697272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stress-induced changes in circadian rhythms of body temperature and activity in rats are not caused by pacemaker changes.
    Meerlo P; van den Hoofdakker RH; Koolhaas JM; Daan S
    J Biol Rhythms; 1997 Feb; 12(1):80-92. PubMed ID: 9104692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stress ulcers in rats: the role of food intake, body weight, and time of day.
    Yi I; Bays ME; Stephan FK
    Physiol Behav; 1993 Aug; 54(2):375-81. PubMed ID: 8372135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scheduled voluntary wheel running activity modulates free-running circadian body temperature rhythms in Octodon degus.
    Kas MJ; Edgar DM
    J Biol Rhythms; 2001 Feb; 16(1):66-75. PubMed ID: 11220781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonphotic entrainment of activity and temperature rhythms in anophthalmic mice.
    Laemle LK; Ottenweller JE
    Physiol Behav; 1999 May; 66(3):461-71. PubMed ID: 10357435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of food deprivation, nutritive and non-nutritive feeding and wheel running on gastric stress ulcers in rats.
    Yi I; Stephan FK
    Physiol Behav; 1998 Jan; 63(2):219-25. PubMed ID: 9423962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Entrainment of the rat motor activity rhythm: effects of the light-dark cycle and physical exercise.
    Cambras T; Vilaplana J; Campuzano A; Canal-Corretger MM; Carulla M; Díez-Noguera A
    Physiol Behav; 2000; 70(3-4):227-32. PubMed ID: 11006420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of vasopressin in modulating circadian rhythm responses to phase shifts.
    Murphy HM; Wideman CH; Nadzam GR
    Peptides; 1998; 19(7):1191-208. PubMed ID: 9786169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biotelemetry transmitter implantation in rodents: impact on growth and circadian rhythms.
    Leon LR; Walker LD; DuBose DA; Stephenson LA
    Am J Physiol Regul Integr Comp Physiol; 2004 May; 286(5):R967-74. PubMed ID: 14726427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of aging on food-entrained circadian rhythms in the rat.
    Mistlberger RE; Houpt TA; Moore-Ede MC
    Neurobiol Aging; 1990; 11(6):619-24. PubMed ID: 2280805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of running wheels regulates the effects of the ovaries on circadian rhythms.
    Ruiz de Elvira MC; Persaud R; Coen CW
    Physiol Behav; 1992 Aug; 52(2):277-84. PubMed ID: 1523253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activity-stress ulcers in rats: the role of preentrainment to meal time.
    Yi I; Stephan FK; Bays ME
    Physiol Behav; 1995 Jul; 58(1):67-73. PubMed ID: 7667429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Olfactory bulbectomy modifies photic entrainment and circadian rhythms of body temperature and locomotor activity in a nocturnal primate.
    Perret M; Aujard F; Séguy M; Schilling A
    J Biol Rhythms; 2003 Oct; 18(5):392-401. PubMed ID: 14582855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.