BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 12435925)

  • 1. Mathematical models of cochlear nucleus onset neurons: I. Point neuron with many weak synaptic inputs.
    Kalluri S; Delgutte B
    J Comput Neurosci; 2003; 14(1):71-90. PubMed ID: 12435925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mathematical models of cochlear nucleus onset neurons: II. model with dynamic spike-blocking state.
    Kalluri S; Delgutte B
    J Comput Neurosci; 2003; 14(1):91-110. PubMed ID: 12435926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tonotopic Optimization for Temporal Processing in the Cochlear Nucleus.
    Oline SN; Ashida G; Burger RM
    J Neurosci; 2016 Aug; 36(32):8500-15. PubMed ID: 27511020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Encoding timing and intensity in the ventral cochlear nucleus of the cat.
    Rhode WS; Smith PH
    J Neurophysiol; 1986 Aug; 56(2):261-86. PubMed ID: 3760921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of auditory nerve innervation and dendritic filtering in shaping onset responses in the ventral cochlear nucleus.
    Sumner CJ; Meddis R; Winter IM
    Brain Res; 2009 Jan; 1247():221-34. PubMed ID: 18848923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temporal and mean rate discharge patterns of single units in the dorsal cochlear nucleus of the anesthetized guinea pig.
    Stabler SE; Palmer AR; Winter IM
    J Neurophysiol; 1996 Sep; 76(3):1667-88. PubMed ID: 8890284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radiate and Planar Multipolar Neurons of the Mouse Anteroventral Cochlear Nucleus: Intrinsic Excitability and Characterization of their Auditory Nerve Input.
    Xie R; Manis PB
    Front Neural Circuits; 2017; 11():77. PubMed ID: 29093666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frequency extent of two-tone facilitation in onset units in the ventral cochlear nucleus.
    Jiang D; Palmer AR; Winter IM
    J Neurophysiol; 1996 Jan; 75(1):380-95. PubMed ID: 8822565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Summation of spatiotemporal input patterns in leaky integrate-and-fire neurons: application to neurons in the cochlear nucleus receiving converging auditory nerve fiber input.
    Kuhlmann L; Burkitt AN; Paolini A; Clark GM
    J Comput Neurosci; 2002; 12(1):55-73. PubMed ID: 11932560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discharge properties of identified cochlear nucleus neurons and auditory nerve fibers in response to repetitive electrical stimulation of the auditory nerve.
    Babalian AL; Ryugo DK; Rouiller EM
    Exp Brain Res; 2003 Dec; 153(4):452-60. PubMed ID: 12955378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Auditory nerve inputs to cochlear nucleus neurons studied with cross-correlation.
    Young ED; Sachs MB
    Neuroscience; 2008 Jun; 154(1):127-38. PubMed ID: 18343587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Convergence of auditory nerve fibers onto bushy cells in the ventral cochlear nucleus: implications of a computational model.
    Rothman JS; Young ED; Manis PB
    J Neurophysiol; 1993 Dec; 70(6):2562-83. PubMed ID: 8120599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitivity of cochlear nucleus neurons to spatio-temporal changes in auditory nerve activity.
    Wang GI; Delgutte B
    J Neurophysiol; 2012 Dec; 108(12):3172-95. PubMed ID: 22972956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Responses of ventral cochlear nucleus onset and chopper units as a function of signal bandwidth.
    Palmer AR; Jiang D; Marshall DH
    J Neurophysiol; 1996 Feb; 75(2):780-94. PubMed ID: 8714652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase-locked response characteristics of single neurons in the frog "cochlear nucleus" to steady-state and sinusoidal-amplitude-modulated tones.
    Feng AS; Lin WY
    J Neurophysiol; 1994 Nov; 72(5):2209-21. PubMed ID: 7884454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuronal population model of globular bushy cells covering unit-to-unit variability.
    Ashida G; Heinermann HT; Kretzberg J
    PLoS Comput Biol; 2019 Dec; 15(12):e1007563. PubMed ID: 31881018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contributions of ion conductances to the onset responses of octopus cells in the ventral cochlear nucleus: simulation results.
    Cai Y; McGee J; Walsh EJ
    J Neurophysiol; 2000 Jan; 83(1):301-14. PubMed ID: 10634873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes of response patterns to excitatory stimuli of different intensities: a model-based study of cochlear nucleus neurons.
    Liu J; Wang C; Xiao Z; Zhou L
    Nan Fang Yi Ke Da Xue Xue Bao; 2014 Mar; 34(3):291-4. PubMed ID: 24670436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intracellular response properties of units in the dorsal cochlear nucleus of unanesthetized decerebrate gerbil.
    Ding J; Voigt HF
    J Neurophysiol; 1997 May; 77(5):2549-72. PubMed ID: 9163376
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibitory properties underlying non-monotonic input-output relationship in low-frequency spherical bushy neurons of the gerbil.
    Kuenzel T; Nerlich J; Wagner H; Rübsamen R; Milenkovic I
    Front Neural Circuits; 2015; 9():14. PubMed ID: 25873864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.