BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

41 related articles for article (PubMed ID: 12436215)

  • 1. Deletion of hepatocyte cysteine dioxygenase type 1, a bile acid repressed gene, enhances glutathione synthesis and ameliorates acetaminophen hepatotoxicity.
    Chen J; Matye D; Dai Clayton Y; Du Y; Nazmul Hasan M; Gu L; Li T
    Biochem Pharmacol; 2024 Apr; 222():116103. PubMed ID: 38428825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of a novel enzyme and the regulation of key enzymes in mammalian taurine synthesis.
    Miyazaki T
    J Pharmacol Sci; 2024 Jan; 154(1):9-17. PubMed ID: 38081683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correction: Comprehensive Metabolic Tracing Reveals the Origin and Catabolism of Cysteine in Mammalian Tissues and Tumors.
    Yoon SJ; Combs JA; Falzone A; Prieto-Farigua N; Caldwell S; Ackerman HD; Flores ER; DeNicola GM
    Cancer Res; 2024 Apr; 84(8):1372. PubMed ID: 38616660
    [No Abstract]   [Full Text] [Related]  

  • 4. Development of a novel cysteine sulfinic Acid decarboxylase knockout mouse: dietary taurine reduces neonatal mortality.
    Park E; Park SY; Dobkin C; Schuller-Levis G
    J Amino Acids; 2014; 2014():346809. PubMed ID: 24639894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The cysteine dioxgenase knockout mouse: altered cysteine metabolism in nonhepatic tissues leads to excess H2S/HS(-) production and evidence of pancreatic and lung toxicity.
    Roman HB; Hirschberger LL; Krijt J; Valli A; Kožich V; Stipanuk MH
    Antioxid Redox Signal; 2013 Oct; 19(12):1321-36. PubMed ID: 23350603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deletion of the γ-aminobutyric acid transporter 2 (GAT2 and SLC6A13) gene in mice leads to changes in liver and brain taurine contents.
    Zhou Y; Holmseth S; Guo C; Hassel B; Höfner G; Huitfeldt HS; Wanner KT; Danbolt NC
    J Biol Chem; 2012 Oct; 287(42):35733-35746. PubMed ID: 22896705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variable responses of small and large human hepatocytes to hypoxia and hypoxia/reoxygenation (H-R).
    Bhogal RH; Weston CJ; Curbishley SM; Bhatt AN; Adams DH; Afford SC
    FEBS Lett; 2011 Mar; 585(6):935-41. PubMed ID: 21356211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of the liver in regulation of body cysteine and taurine levels: a brief review.
    Stipanuk MH
    Neurochem Res; 2004 Jan; 29(1):105-10. PubMed ID: 14992268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic zonation of liver parenchyma.
    Jungermann K
    Semin Liver Dis; 1988 Nov; 8(4):329-41. PubMed ID: 3062788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of intralobular compartmentation in hepatic metabolism.
    Jungermann K
    Diabete Metab; 1992; 18(1 Pt 2):81-6. PubMed ID: 1563554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cysteine metabolism in periportal and perivenous hepatocytes: perivenous cells have greater capacity for glutathione production and taurine synthesis but not for cysteine catabolism.
    Bella DL; Hirschberger LL; Kwon YH; Stipanuk MH
    Amino Acids; 2002; 23(4):453-8. PubMed ID: 12436215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of cysteine and taurine in regulating glutathione synthesis by periportal and perivenous hepatocytes.
    Penttilä KE
    Biochem J; 1990 Aug; 269(3):659-64. PubMed ID: 1975168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rats fed a low protein diet supplemented with sulfur amino acids have increased cysteine dioxygenase activity and increased taurine production in hepatocytes.
    Bagley PJ; Stipanuk MH
    J Nutr; 1995 Apr; 125(4):933-40. PubMed ID: 7722697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intrasplenic transplantation of isolated periportal and perivenous hepatocytes as a long-term system for study of liver-specific gene expression.
    Chen L; Davis GJ; Crabb DW; Lumeng L
    Hepatology; 1994 Apr; 19(4):989-98. PubMed ID: 7908009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glutathione replenishment capacity is lower in isolated perivenous than in periportal hepatocytes.
    Kera Y; Penttilä KE; Lindros KO
    Biochem J; 1988 Sep; 254(2):411-7. PubMed ID: 2902850
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 17.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.