BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 12436305)

  • 1. Oxygenases without requirement for cofactors or metal ions.
    Fetzner S
    Appl Microbiol Biotechnol; 2002 Nov; 60(3):243-57. PubMed ID: 12436305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional and evolutionary relationships among diverse oxygenases.
    Harayama S; Kok M; Neidle EL
    Annu Rev Microbiol; 1992; 46():565-601. PubMed ID: 1444267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cofactor-independent oxidases and oxygenases.
    Fetzner S; Steiner RA
    Appl Microbiol Biotechnol; 2010 Apr; 86(3):791-804. PubMed ID: 20157809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 2,4-dioxygenases catalyzing N-heterocyclic-ring cleavage and formation of carbon monoxide. Purification and some properties of 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase from Arthrobacter sp. Rü61a and comparison with 1H-3-hydroxy-4-oxoquinoline 2,4-dioxygenase from Pseudomonas putida 33/1.
    Bauer I; Max N; Fetzner S; Lingens F
    Eur J Biochem; 1996 Sep; 240(3):576-83. PubMed ID: 8856057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dioxygenases without requirement for cofactors and their chemical model reaction: compulsory order ternary complex mechanism of 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase involving general base catalysis by histidine 251 and single-electron oxidation of the substrate dianion.
    Frerichs-Deeken U; Ranguelova K; Kappl R; Hüttermann J; Fetzner S
    Biochemistry; 2004 Nov; 43(45):14485-99. PubMed ID: 15533053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymes involved in the aerobic bacterial degradation of N-heteroaromatic compounds: molybdenum hydroxylases and ring-opening 2,4-dioxygenases.
    Fetzner S
    Naturwissenschaften; 2000 Feb; 87(2):59-69. PubMed ID: 10663136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site-directed mutagenesis of potential catalytic residues in 1H-3-hydroxy-4-oxoquinoline 2,4-dioxygenase, and hypothesis on the catalytic mechanism of 2,4-dioxygenolytic ring cleavage.
    Fischer F; Fetzner S
    FEMS Microbiol Lett; 2000 Sep; 190(1):21-7. PubMed ID: 10981684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cofactor-independent C-C bond cleavage reactions catalyzed by the AlpJ family of oxygenases in atypical angucycline biosynthesis.
    Gao J; Li L; Shen S; Ai G; Wang B; Guo F; Yang T; Han H; Xu Z; Pan G; Fan K
    Beilstein J Org Chem; 2024; 20():1198-1206. PubMed ID: 38887580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic mechanism of cofactor-free dioxygenases and how they circumvent spin-forbidden oxygenation of their substrates.
    Hernández-Ortega A; Quesne MG; Bui S; Heyes DJ; Steiner RA; Scrutton NS; de Visser SP
    J Am Chem Soc; 2015 Jun; 137(23):7474-87. PubMed ID: 25988744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monooxygenases as biocatalysts: Classification, mechanistic aspects and biotechnological applications.
    Torres Pazmiño DE; Winkler M; Glieder A; Fraaije MW
    J Biotechnol; 2010 Mar; 146(1-2):9-24. PubMed ID: 20132846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glycopeptide biosynthesis in the context of basic cellular functions.
    Stegmann E; Frasch HJ; Wohlleben W
    Curr Opin Microbiol; 2010 Oct; 13(5):595-602. PubMed ID: 20920883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DpgC-Catalyzed Peroxidation of 3,5-Dihydroxyphenylacetyl-CoA (DPA-CoA): Insights into the Spin-Forbidden Transition and Charge Transfer Mechanisms*.
    Ortega P; Zanchet A; Sanz-Sanz C; Gómez-Carrasco S; González-Sánchez L; Jambrina PG
    Chemistry; 2021 Jan; 27(5):1700-1712. PubMed ID: 32975323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of naphthalene dioxygenase: side-on binding of dioxygen to iron.
    Karlsson A; Parales JV; Parales RE; Gibson DT; Eklund H; Ramaswamy S
    Science; 2003 Feb; 299(5609):1039-42. PubMed ID: 12586937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substrate-assisted O2 activation in a cofactor-independent dioxygenase.
    Thierbach S; Bui N; Zapp J; Chhabra SR; Kappl R; Fetzner S
    Chem Biol; 2014 Feb; 21(2):217-25. PubMed ID: 24388758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly selective but multifunctional oxygenases in secondary metabolism.
    Cochrane RV; Vederas JC
    Acc Chem Res; 2014 Oct; 47(10):3148-61. PubMed ID: 25250512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variations of the 2-His-1-carboxylate theme in mononuclear non-heme FeII oxygenases.
    Straganz GD; Nidetzky B
    Chembiochem; 2006 Oct; 7(10):1536-48. PubMed ID: 16858718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A profile of ring-hydroxylating oxygenases that degrade aromatic pollutants.
    Peng RH; Xiong AS; Xue Y; Fu XY; Gao F; Zhao W; Tian YS; Yao QH
    Rev Environ Contam Toxicol; 2010; 206():65-94. PubMed ID: 20652669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent advances in oxygenase-catalyzed biotransformations.
    Urlacher VB; Schmid RD
    Curr Opin Chem Biol; 2006 Apr; 10(2):156-61. PubMed ID: 16488653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substrate binding site of naphthalene 1,2-dioxygenase: functional implications of indole binding.
    Carredano E; Karlsson A; Kauppi B; Choudhury D; Parales RE; Parales JV; Lee K; Gibson DT; Eklund H; Ramaswamy S
    J Mol Biol; 2000 Feb; 296(2):701-12. PubMed ID: 10669618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Biosynthesis of benzoisochromanequinones antibiotics from streptomycetes--a review].
    Wang W; Wang H; Li A
    Wei Sheng Wu Xue Bao; 2012 May; 52(5):541-9. PubMed ID: 22803338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.