BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 12436319)

  • 21. Enhancing effect of iron on chromate reduction by Cellulomonas flavigena.
    Xu W; Liu Y; Zeng G; Li X; Tang C; Yuan X
    J Hazard Mater; 2005 Nov; 126(1-3):17-22. PubMed ID: 16039044
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Detoxification of chromium slag by chromate resistant bacteria.
    Quan X; Tan H; Zhao Y; Hu Y
    J Hazard Mater; 2006 Sep; 137(2):836-41. PubMed ID: 16784806
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Isolation and characterization of a Cr(VI)-reduction Ochrobactrum sp. strain CSCr-3 from chromium landfill.
    He Z; Gao F; Sha T; Hu Y; He C
    J Hazard Mater; 2009 Apr; 163(2-3):869-73. PubMed ID: 18722054
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modeling in-situ uranium(VI) bioreduction by sulfate-reducing bacteria.
    Luo J; Weber FA; Cirpka OA; Wu WM; Nyman JL; Carley J; Jardine PM; Criddle CS; Kitanidis PK
    J Contam Hydrol; 2007 Jun; 92(1-2):129-48. PubMed ID: 17291626
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Isolation and characterization of Cr(VI) reducing Cellulomonas spp. from subsurface soils: implications for long-term chromate reduction.
    Viamajala S; Smith WA; Sani RK; Apel WA; Petersen JN; Neal AL; Roberto FF; Newby DT; Peyton BM
    Bioresour Technol; 2007 Feb; 98(3):612-22. PubMed ID: 16644211
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization and activity studies of highly heavy metal resistant sulphate-reducing bacteria to be used in acid mine drainage decontamination.
    Martins M; Faleiro ML; Barros RJ; Veríssimo AR; Barreiros MA; Costa MC
    J Hazard Mater; 2009 Jul; 166(2-3):706-13. PubMed ID: 19135795
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanisms of bacterial resistance to chromium compounds.
    Ramírez-Díaz MI; Díaz-Pérez C; Vargas E; Riveros-Rosas H; Campos-García J; Cervantes C
    Biometals; 2008 Jun; 21(3):321-32. PubMed ID: 17934697
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Permeable reactive biobarriers for in situ Cr(VI) reduction: bench scale tests using Cellulomonas sp. strain ES6.
    Viamajala S; Peyton BM; Gerlach R; Sivaswamy V; Apel WA; Petersen JN
    Biotechnol Bioeng; 2008 Dec; 101(6):1150-62. PubMed ID: 18683257
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ochrobactrum tritici strain 5bvl1 - characterization of a Cr(VI)-resistant and Cr(VI)-reducing strain.
    Branco R; Alpoim MC; Morais PV
    Can J Microbiol; 2004 Sep; 50(9):697-703. PubMed ID: 15644923
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bioremediation of heavy metal-contaminated soils by sulfate-reducing bacteria.
    Jiang W; Fan W
    Ann N Y Acad Sci; 2008 Oct; 1140():446-54. PubMed ID: 18991946
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Efficient removal of hexavalent chromium by a tolerant Streptomyces sp. affected by the toxic effect of metal exposure.
    Morales DK; Ocampo W; Zambrano MM
    J Appl Microbiol; 2007 Dec; 103(6):2704-12. PubMed ID: 18045449
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modeling chromate reduction in Shewanella oneidensis MR-1: development of a novel dual-enzyme kinetic model.
    Viamajala S; Peyton BM; Petersen JN
    Biotechnol Bioeng; 2003 Sep; 83(7):790-7. PubMed ID: 12889019
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Experimental and mathematical modeling studies on Cr(VI) reduction by CRB, SRB and IRB, individually and in combination.
    Somasundaram V; Philip L; Bhallamudi SM
    J Hazard Mater; 2009 Dec; 172(2-3):606-17. PubMed ID: 19692172
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization and genomic analysis of chromate resistant and reducing Bacillus cereus strain SJ1.
    He M; Li X; Guo L; Miller SJ; Rensing C; Wang G
    BMC Microbiol; 2010 Aug; 10():221. PubMed ID: 20723231
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Simultaneous sulfate reduction and copper removal by a PVA-immobilized sulfate reducing bacterial culture.
    Hsu HF; Jhuo YS; Kumar M; Ma YS; Lin JG
    Bioresour Technol; 2010 Jun; 101(12):4354-61. PubMed ID: 20153634
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Different physiological responses to chromate and dichromate in the chromium resistant and reducing strain Ochrobactrum tritici 5bvl1.
    Francisco R; Moreno A; Morais PV
    Biometals; 2010 Aug; 23(4):713-25. PubMed ID: 20390438
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chromate reduction by Burkholderia cepacia MCMB-821, isolated from the pristine habitat of alkaline crater lake.
    Wani R; Kodam KM; Gawai KR; Dhakephalkar PK
    Appl Microbiol Biotechnol; 2007 Jun; 75(3):627-32. PubMed ID: 17361433
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fungal bioremediation of chromates: conformational changes of biomass during sequestration, binding, and reduction of hexavalent chromium ions.
    Sanghi R; Sankararamakrishnan N; Dave BC
    J Hazard Mater; 2009 Sep; 169(1-3):1074-80. PubMed ID: 19467785
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Toxicity of hexavalent chromium and its reduction by bacteria isolated from soil contaminated with tannery waste.
    Megharaj M; Avudainayagam S; Naidu R
    Curr Microbiol; 2003 Jul; 47(1):51-4. PubMed ID: 12783193
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bacterial Cr(VI) reduction concurrently improves sunflower (Helianthus Annuus L.) growth.
    Faisal M; Hasnain S
    Biotechnol Lett; 2005 Jul; 27(13):943-7. PubMed ID: 16091890
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.