These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 12436319)

  • 81. Characterization and genomic analysis of a highly chromate resistant and reducing bacterial strain Lysinibacillus fusiformis ZC1.
    He M; Li X; Liu H; Miller SJ; Wang G; Rensing C
    J Hazard Mater; 2011 Jan; 185(2-3):682-8. PubMed ID: 20952126
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Community structure and function in a H(2)-based membrane biofilm reactor capable of bioreduction of selenate and chromate.
    Chung J; Ryu H; Abbaszadegan M; Rittmann BE
    Appl Microbiol Biotechnol; 2006 Oct; 72(6):1330-9. PubMed ID: 16673108
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Cr(VI) reduction and physiological toxicity are impacted by resource ratio in Desulfovibrio vulgaris.
    Franco LC; Steinbeisser S; Zane GM; Wall JD; Fields MW
    Appl Microbiol Biotechnol; 2018 Mar; 102(6):2839-2850. PubMed ID: 29429007
    [TBL] [Abstract][Full Text] [Related]  

  • 84. [Chromates: resistance and detoxification in bacteria].
    Cervantes C; Vaca S
    Rev Latinoam Microbiol; 1991; 33(1):71-6. PubMed ID: 1670257
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Chromate reduction is expedited by bacteria engineered to produce the compatible solute trehalose.
    Frederick TM; Taylor EA; Willis JL; Shultz MS; Woodruff PJ
    Biotechnol Lett; 2013 Aug; 35(8):1291-6. PubMed ID: 23563698
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Genetic Basis of Chromate Adaptation and the Role of the Pre-existing Genetic Divergence during an Experimental Evolution Study with Desulfovibrio vulgaris Populations.
    Shi W; Ma Q; Pan F; Fan Y; Kempher ML; Ning D; Qu Y; Wall JD; Zhou A; Zhou J
    mSystems; 2021 Jun; 6(3):e0049321. PubMed ID: 34061571
    [TBL] [Abstract][Full Text] [Related]  

  • 87. [Crocoite reduction by a culture of Pseudomonas chromatophila sp. nov].
    Lebedeva EV; Lialikova NN
    Mikrobiologiia; 1979; 48(3):517-22. PubMed ID: 470636
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Chromate toxicity and the role of sulfur.
    Holland SL; Avery SV
    Metallomics; 2011 Nov; 3(11):1119-23. PubMed ID: 21804974
    [TBL] [Abstract][Full Text] [Related]  

  • 89. An ion chromatographic method for insoluble chromates in paint aerosol.
    Molina D; Abell MT
    Am Ind Hyg Assoc J; 1987 Oct; 48(10):830-5. PubMed ID: 3687727
    [TBL] [Abstract][Full Text] [Related]  

  • 90. [Efficiency and mechanism on reduction of U(VI) by sulfate reducing bacteria].
    Xie SB; Wang SY; Zhang HJ; Liu YJ; Wang JS
    Huan Jing Ke Xue; 2009 Jul; 30(7):1962-7. PubMed ID: 19774992
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Identification of the main mechanisms involved in the tolerance and bioremediation of Cr(VI) by Bacillus sp. SFC 500-1E.
    Ontañon OM; Fernandez M; Agostini E; González PS
    Environ Sci Pollut Res Int; 2018 Jun; 25(16):16111-16120. PubMed ID: 29594905
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Study on the oxidative stress and transcriptional level in Cr(VI) and Hg(II) reducing strain Acinetobacter indicus yy-1 isolated from chromium-contaminated soil.
    Hu L; Liu B; Li S; Zhong H; He Z
    Chemosphere; 2021 Apr; 269():128741. PubMed ID: 33127119
    [TBL] [Abstract][Full Text] [Related]  

  • 93. The chromate resistance phenotype of some yeast mutants correlates with a lower level of Cr(V)-species generated in the extra-cellular medium.
    Ksheminska H; Honchar T; Usatenko Y; Gayda G; Gonchar M
    Biometals; 2010 Aug; 23(4):633-42. PubMed ID: 20225069
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Cadmium accumulation and DNA homology with metal resistance genes in sulfate-reducing bacteria.
    Naz N; Young HK; Ahmed N; Gadd GM
    Appl Environ Microbiol; 2005 Aug; 71(8):4610-8. PubMed ID: 16085855
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Bioreduction of Chromate in a Methane-Based Membrane Biofilm Reactor.
    Lai CY; Zhong L; Zhang Y; Chen JX; Wen LL; Shi LD; Sun YP; Ma F; Rittmann BE; Zhou C; Tang Y; Zheng P; Zhao HP
    Environ Sci Technol; 2016 Jun; 50(11):5832-9. PubMed ID: 27161770
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Chromate reduction in Serratia marcescens isolated from tannery effluent and potential application for bioremediation of chromate pollution.
    Mondaca MA; Campos V; Moraga R; Zaror CA
    ScientificWorldJournal; 2002 Apr; 2():972-7. PubMed ID: 12805951
    [TBL] [Abstract][Full Text] [Related]  

  • 97. The bioenergetics mechanisms and applications of sulfate-reducing bacteria in remediation of pollutants in drainage: A review.
    Li X; Lan SM; Zhu ZP; Zhang C; Zeng GM; Liu YG; Cao WC; Song B; Yang H; Wang SF; Wu SH
    Ecotoxicol Environ Saf; 2018 Aug; 158():162-170. PubMed ID: 29684746
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Chromate Resistance Mechanisms in Leucobacter chromiiresistens.
    Sturm G; Brunner S; Suvorova E; Dempwolff F; Reiner J; Graumann P; Bernier-Latmani R; Majzlan J; Gescher J
    Appl Environ Microbiol; 2018 Dec; 84(23):. PubMed ID: 30266727
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Reutilization of immobilized fungus Rhizopus sp. LG04 to reduce toxic chromate.
    Liu H; Guo L; Liao S; Wang G
    J Appl Microbiol; 2012 Apr; 112(4):651-9. PubMed ID: 22332919
    [TBL] [Abstract][Full Text] [Related]  

  • 100. The effect of electron competition on chromate reduction using methane as electron donor.
    Lv PL; Zhong L; Dong QY; Yang SL; Shen WW; Zhu QS; Lai CY; Luo AC; Tang Y; Zhao HP
    Environ Sci Pollut Res Int; 2018 Mar; 25(7):6609-6618. PubMed ID: 29255986
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.