These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 12436319)

  • 101. Influence of transition metals on Streptomyces coelicolor and S. sioyaensis and generation of chromate-reducing mutants.
    Gren T; Ostash B; Hrubskyy Y; Tistechok S; Fedorenko V
    Folia Microbiol (Praha); 2014 Mar; 59(2):147-53. PubMed ID: 24037512
    [TBL] [Abstract][Full Text] [Related]  

  • 102. Assessing chromate reduction by dissimilatory iron reducing bacteria using mathematical modeling.
    Peng L; Liu Y; Gao SH; Dai X; Ni BJ
    Chemosphere; 2015 Nov; 139():334-9. PubMed ID: 26171818
    [TBL] [Abstract][Full Text] [Related]  

  • 103. Chromate-reducing properties of soluble flavoproteins from Pseudomonas putida and Escherichia coli.
    Ackerley DF; Gonzalez CF; Park CH; Blake R; Keyhan M; Matin A
    Appl Environ Microbiol; 2004 Feb; 70(2):873-82. PubMed ID: 14766567
    [TBL] [Abstract][Full Text] [Related]  

  • 104. Microbial Chromate Reduction Coupled to Anaerobic Oxidation of Elemental Sulfur or Zerovalent Iron.
    Shi J; Zhang B; Qiu R; Lai C; Jiang Y; He C; Guo J
    Environ Sci Technol; 2019 Mar; 53(6):3198-3207. PubMed ID: 30776217
    [TBL] [Abstract][Full Text] [Related]  

  • 105. Optimization of Culture Conditions for Growth Associated with Cr(VI) Removal by Wickerhamomyces anomalus M10.
    Fernández PM; Cruz EL; Viñarta SC; Castellanos de Figueroa LI
    Bull Environ Contam Toxicol; 2017 Mar; 98(3):400-406. PubMed ID: 27830289
    [TBL] [Abstract][Full Text] [Related]  

  • 106. Characterisation of uranium(VI) sorption by two environmental fungal species using gamma spectrometry.
    Gargarello R; Cavalitto S; Di Gregorio D; Niello JF; Huck H; Pardo A; Somacal H; Curutchet G
    Environ Technol; 2008 Dec; 29(12):1341-8. PubMed ID: 19149355
    [TBL] [Abstract][Full Text] [Related]  

  • 107. Reduction of adsorbed As(V) on nano-TiO
    Luo T; Ye L; Ding C; Yan J; Jing C
    Sci Total Environ; 2017 Nov; 598():839-846. PubMed ID: 28458201
    [TBL] [Abstract][Full Text] [Related]  

  • 108. Bioassessment of heavy metal toxicity and enhancement of heavy metal removal by sulfate-reducing bacteria in the presence of zero valent iron.
    Guo J; Kang Y; Feng Y
    J Environ Manage; 2017 Dec; 203(Pt 1):278-285. PubMed ID: 28803152
    [TBL] [Abstract][Full Text] [Related]  

  • 109. [Metabolism features of bacteria resistant to high concentrations of chromate].
    Smirnova GF; Podgorskiĭ VS
    Mikrobiol Z; 2013; 75(2):3-9. PubMed ID: 23720958
    [TBL] [Abstract][Full Text] [Related]  

  • 110. Bacterial interactions with chromate.
    Cervantes C
    Antonie Van Leeuwenhoek; 1991 May; 59(4):229-33. PubMed ID: 1909110
    [TBL] [Abstract][Full Text] [Related]  

  • 111. Conductive microbial cellulose as a novel biocathode for Cr (VI) bioreduction.
    Loloei M; Rezaee A; Roohaghdam AS; Aliofkhazraei M
    Carbohydr Polym; 2017 Apr; 162():56-61. PubMed ID: 28224895
    [TBL] [Abstract][Full Text] [Related]  

  • 112. Reduction of Cr(VI) by a Consortium of Sulfate-Reducing Bacteria (SRB III).
    Fude L; Harris B; Urrutia MM; Beveridge TJ
    Appl Environ Microbiol; 1994 May; 60(5):1525-31. PubMed ID: 16349253
    [TBL] [Abstract][Full Text] [Related]  

  • 113. Growth of sulfate-reducing bacteria and methanogenic archaea with methylated sulfur compounds: a commentary on the thermodynamic aspects.
    Scholten JC; Murrell JC; Kelly DP
    Arch Microbiol; 2003; 179(2):135-44. PubMed ID: 12560992
    [TBL] [Abstract][Full Text] [Related]  

  • 114. Survival and chromate reducing ability of Pseudomonas aeruginosa in industrial effluents.
    Ganguli A; Tripathi AK
    Lett Appl Microbiol; 1999 Jan; 28(1):76-80. PubMed ID: 10030037
    [TBL] [Abstract][Full Text] [Related]  

  • 115. How do enzymes reduce metals? The mechanism of the reduction of Cr(VI) in chromate by cytochrome c7 proteins proposed from DFT calculations.
    Sundararajan M; Campbell AJ; Hillier IH
    Faraday Discuss; 2011; 148():195-205; discussion 207-28. PubMed ID: 21322485
    [TBL] [Abstract][Full Text] [Related]  

  • 116. Production of a microcapsule agent of chromate-reducing Lysinibacillus fusiformis ZC1 and its application in remediation of chromate-spiked soil.
    Huang J; Li J; Wang G
    Springerplus; 2016; 5():561. PubMed ID: 27218011
    [TBL] [Abstract][Full Text] [Related]  

  • 117. Chromate detoxification potential of Staphylococcus sp. isolates from an estuary.
    Pereira EJ; Ramaiah N
    Ecotoxicology; 2019 May; 28(4):457-466. PubMed ID: 30969406
    [TBL] [Abstract][Full Text] [Related]  

  • 118. In vitro reducing abilities towards chromate of various hydroxy-containing compounds, including saccharides and their derivatives.
    Kaiwar SP; Raghavan MS; Rao CP
    Carbohydr Res; 1994 Mar; 256(1):29-40. PubMed ID: 8194073
    [TBL] [Abstract][Full Text] [Related]  

  • 119. Microbial reduction of chromate in the presence of nitrate by three nitrate respiring organisms.
    Chovanec P; Sparacino-Watkins C; Zhang N; Basu P; Stolz JF
    Front Microbiol; 2012; 3():416. PubMed ID: 23251135
    [TBL] [Abstract][Full Text] [Related]  

  • 120. Microcalorimetric investigation of the toxic action of Cr(VI) on the metabolism of Tetrahymena thermophila BF(5) during growth.
    Zheng D; Liu Y; Zhang Y; Chen XJ; Shen YF
    Environ Toxicol Pharmacol; 2006 Sep; 22(2):121-7. PubMed ID: 21783697
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.