These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 12437163)

  • 1. Optimization of artificial neural networks used for retention modelling in ion chromatography.
    Srecnik G; Debeljak Z; Cerjan-Stefanović S; Novic M; Bolancab T
    J Chromatogr A; 2002 Oct; 973(1-2):47-59. PubMed ID: 12437163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of an inorganic cations retention model in ion chromatography by means of artificial neural networks with different two-phase training algorithms.
    Bolanca T; Cerjan-Stefanović S; Regelja M; Regelja H; Loncarić S
    J Chromatogr A; 2005 Aug; 1085(1):74-85. PubMed ID: 16106851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of artificial neural networks for gradient elution retention modelling in ion chromatography.
    Bolanca T; Cerjan-Stefanović S; Regelja M; Regelja H; Loncarić S
    J Sep Sci; 2005 Aug; 28(13):1427-33. PubMed ID: 16158983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of artificial neural network for retention modeling in high-performance liquid chromatography.
    Vasiljević T; Onjia A; Cokesa D; Lausević M
    Talanta; 2004 Oct; 64(3):785-90. PubMed ID: 18969673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of retention times for anions in linear gradient elution ion chromatography with hydroxide eluents using artificial neural networks.
    Madden JE; Avdalovic N; Haddad PR; Havel J
    J Chromatogr A; 2001 Feb; 910(1):173-9. PubMed ID: 11263571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of separation in gradient elution ion chromatography by combining several retention models and objective functions.
    Bolanca T; Cerjan-Stefanović S; Lusa M; Ukić S; Rogosić M
    J Sep Sci; 2008 Mar; 31(4):705-13. PubMed ID: 18264988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards a chromatographic similarity index to establish localised quantitative structure-retention relationships for retention prediction. II Use of Tanimoto similarity index in ion chromatography.
    Park SH; Talebi M; Amos RIJ; Tyteca E; Haddad PR; Szucs R; Pohl CA; Dolan JW
    J Chromatogr A; 2017 Nov; 1523():173-182. PubMed ID: 28291517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of artificial neural network to predict the retention time of drug metabolites in two-dimensional liquid chromatography.
    Noorizadeh H; Sobhan-Ardakani S; Raoofi F; Noorizadeh M; Mortazavi SS; Ahmadi T; Pournajafi K
    Drug Test Anal; 2013 May; 5(5):315-9. PubMed ID: 22012704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Artificial neural networks in analysis of indinavir and its degradation products retention.
    Jancić-Stojanović B; Ivanović D; Malenović A; Medenica M
    Talanta; 2009 Apr; 78(1):107-12. PubMed ID: 19174211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Artificial neural network-genetic algorithm based optimization for the adsorption of methylene blue and brilliant green from aqueous solution by graphite oxide nanoparticle.
    Ghaedi M; Zeinali N; Ghaedi AM; Teimuori M; Tashkhourian J
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 May; 125():264-77. PubMed ID: 24556135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of capillary gas chromatographic retention times of fatty acid methyl esters in human blood using MLR, PLS and back-propagation artificial neural networks.
    Gupta VK; Khani H; Ahmadi-Roudi B; Mirakhorli S; Fereyduni E; Agarwal S
    Talanta; 2011 Jan; 83(3):1014-22. PubMed ID: 21147352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New model for prediction binary mixture of antihistamine decongestant using artificial neural networks and least squares support vector machine by spectrophotometry method.
    Mofavvaz S; Sohrabi MR; Nezamzadeh-Ejhieh A
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Jul; 182():105-115. PubMed ID: 28412664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of an ion chromatographic gradient retention model from isocratic elution experiments.
    Bolanca T; Cerjan-Stefanović S; Lusa M; Rogosić M; Ukić S
    J Chromatogr A; 2006 Jul; 1121(2):228-35. PubMed ID: 16698028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retention prediction of low molecular weight anions in ion chromatography based on quantitative structure-retention relationships applied to the linear solvent strength model.
    Park SH; Haddad PR; Talebi M; Tyteca E; Amos RI; Szucs R; Dolan JW; Pohl CA
    J Chromatogr A; 2017 Feb; 1486():68-75. PubMed ID: 28057331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of Artificial Neural Network Model for Diesel Fuel Properties Prediction using Vibrational Spectroscopy.
    Bolanča T; Marinović S; Ukić S; Jukić A; Rukavina V
    Acta Chim Slov; 2012 Jun; 59(2):249-57. PubMed ID: 24061237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance comparison of neural network training algorithms in modeling of bimodal drug delivery.
    Ghaffari A; Abdollahi H; Khoshayand MR; Bozchalooi IS; Dadgar A; Rafiee-Tehrani M
    Int J Pharm; 2006 Dec; 327(1-2):126-38. PubMed ID: 16959449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Artificial neural network based modelling approach for municipal solid waste gasification in a fluidized bed reactor.
    Pandey DS; Das S; Pan I; Leahy JJ; Kwapinski W
    Waste Manag; 2016 Dec; 58():202-213. PubMed ID: 27590092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural networks convergence using physicochemical data.
    Karelson M; Dobchev DA; Kulshyn OV; Katritzky AR
    J Chem Inf Model; 2006; 46(5):1891-7. PubMed ID: 16995718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of HPLC retention times of tebipenem pivoxyl and its degradation products in solid state by applying adaptive artificial neural network with recursive features elimination.
    Mizera M; Talaczyńska A; Zalewski P; Skibiński R; Cielecka-Piontek J
    Talanta; 2015 May; 137():174-81. PubMed ID: 25770622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemometrical tools in the study of the retention behavior of azole antifungals.
    Vemić A; Malenović A; Rakić T; Kostić N; Jančić Stojanović B
    J Chromatogr Sci; 2014 Feb; 52(2):95-102. PubMed ID: 23295779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.