BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 12437175)

  • 1. Characterization of solvation properties of lipid bilayer membranes in liposome electrokinetic chromatography.
    Burns ST; Agbodjan AA; Khaledi MG
    J Chromatogr A; 2002 Oct; 973(1-2):167-76. PubMed ID: 12437175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical selectivity in micellar electrokinetic chromatography: characterization of solute-micelle interactions for classification of surfactants.
    Yang S; Khaledi MG
    Anal Chem; 1995 Feb; 67(3):499-510. PubMed ID: 7893000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micellar selectivity triangle for classification of chemical selectivity in electrokinetic chromatography.
    Fu C; Khaledi MG
    J Chromatogr A; 2009 Mar; 1216(10):1891-900. PubMed ID: 19181322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of basic drugs with lipid bilayers using liposome electrokinetic chromatography.
    Carrozzino JM; Khaledi MG
    Pharm Res; 2004 Dec; 21(12):2327-35. PubMed ID: 15648265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phospholipid bilayer affinities and solvation characteristics by electrokinetic chromatography with a nanodisc pseudostationary phase.
    Penny WM; Steele HB; Ross JB; Palmer CP
    Electrophoresis; 2017 Mar; 38(5):738-746. PubMed ID: 27859480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of class I and II organic modifiers on retention and selectivity in vesicle electrokinetic chromatography.
    Pascoe R; Foley JP
    Electrophoresis; 2002 Jun; 23(11):1618-27. PubMed ID: 12179980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of surfactant and phospholipid vesicles for use as pseudostationary phases in electrokinetic chromatography.
    Pascoe RJ; Foley JP
    Electrophoresis; 2003 Dec; 24(24):4227-40. PubMed ID: 14679570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predictions of micelle-water partition coefficients and retention in micellar electrokinetic chromatography from solute structure. 2. Fragmental constant approach.
    Burns ST; Khaledi MG
    Anal Chem; 2004 Sep; 76(18):5451-8. PubMed ID: 15362906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of mixed micellar pseudostationary phases in electrokinetic chromatography using linear solvation energy relationships.
    Khaledi MG; Bumgarner JG; Hadjmohammadi M
    J Chromatogr A; 1998 Apr; 802(1):35-47. PubMed ID: 9588011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monomeric and polymeric anionic gemini surfactants and mixed surfactant systems in micellar electrokinetic chromatography. Part II: characterization of chemical selectivity using two linear solvation energy relationship models.
    Akbay C; Agbaria RA; Warner IM
    Electrophoresis; 2005 Jan; 26(2):426-45. PubMed ID: 15657890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of liposomes by capillary electrophoresis and their use as carrier in electrokinetic chromatography.
    Bilek G; Kremser L; Blaas D; Kenndler E
    J Chromatogr B Analyt Technol Biomed Life Sci; 2006 Sep; 841(1-2):38-51. PubMed ID: 16682264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrokinetic chromatographic characterization of novel catanionic surfactants vesicle as pseudostationary phase.
    Lu J; Ni X; Cao Y; Ma X; Cao G
    Electrophoresis; 2015 Jan; 36(2):312-8. PubMed ID: 25348281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid estimation of octanol-water partition coefficients using synthesized vesicles in electrokinetic chromatography.
    Klotz WL; Schure MR; Foley JP
    J Chromatogr A; 2002 Jul; 962(1-2):207-19. PubMed ID: 12198964
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The relative partitioning of neutral and ionised compounds in sodium dodecyl sulfate micelles measured by micellar electrokinetic capillary chromatography.
    Taillardat-Bertschinger A; Carrupt PA; Testa B
    Eur J Pharm Sci; 2002 Mar; 15(2):225-34. PubMed ID: 11849920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of organic modifiers on retention mechanism and selectivity in micellar electrokinetic capillary chromatography studied by linear solvation energy relationships.
    Liu Z; Zou H; Ye M; Ni J; Zhang Y
    J Chromatogr A; 1999 Nov; 863(1):69-79. PubMed ID: 10591465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical selectivity in micellar electrokinetic chromatography. II. Rationalization of elution patterns in different surfactant systems.
    Yang S; Bumgarner JG; Khaledi MG
    J Chromatogr A; 1996 Jul; 738(2):265-74. PubMed ID: 8696506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Linear solvation energy relationships in micellar liquid chromatography and micellar electrokinetic capillary chromatography.
    Yang S; Khaledi MG
    J Chromatogr A; 1995 Feb; 692(1-2):301-10. PubMed ID: 7719457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative structure-activity relationships studies with micellar electrokinetic chromatography. Influence of surfactant type and mixed micelles on estimation of hydrophobicity and bioavailability.
    Yang S; Bumgarner JG; Kruk LF; Khaledi MG
    J Chromatogr A; 1996 Jan; 721(2):323-35. PubMed ID: 8611942
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of solute partitioning into cationic vesicles of dihexadecyldimethylammonium bromide using electrokinetic chromatography.
    Agbodjan AA; Khaledi MG
    J Chromatogr A; 2003 Jul; 1004(1-2):145-53. PubMed ID: 12929970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lecithin liposomes and microemulsions as new chromatographic phases.
    Amézqueta S; Fernández-Pumarega A; Farré S; Luna D; Fuguet E; Rosés M
    J Chromatogr A; 2020 Jan; 1611():460596. PubMed ID: 31610920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.