These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 12437342)
1. The 2.1 A structure of Torpedo californica creatine kinase complexed with the ADP-Mg(2+)-NO(3)(-)-creatine transition-state analogue complex. Lahiri SD; Wang PF; Babbitt PC; McLeish MJ; Kenyon GL; Allen KN Biochemistry; 2002 Nov; 41(47):13861-7. PubMed ID: 12437342 [TBL] [Abstract][Full Text] [Related]
2. Structural studies of human brain-type creatine kinase complexed with the ADP-Mg2+-NO3- -creatine transition-state analogue complex. Bong SM; Moon JH; Nam KH; Lee KS; Chi YM; Hwang KY FEBS Lett; 2008 Nov; 582(28):3959-65. PubMed ID: 18977227 [TBL] [Abstract][Full Text] [Related]
3. Changes in MM-CK conformational mobility upon formation of the ADP-Mg(2+)-NO(3)(-)-creatine transition state analogue complex as detected by hydrogen/deuterium exchange. Mazon H; Marcillat O; Forest E; Vial C Biochemistry; 2003 Nov; 42(46):13596-604. PubMed ID: 14622006 [TBL] [Abstract][Full Text] [Related]
4. Loop movement and catalysis in creatine kinase. Wang PF; Flynn AJ; McLeish MJ; Kenyon GL IUBMB Life; 2005; 57(4-5):355-62. PubMed ID: 16036620 [TBL] [Abstract][Full Text] [Related]
5. Determination of the affinity of each component of a composite quaternary transition-state analogue complex of creatine kinase. Borders CL; Snider MJ; Wolfenden R; Edmiston PL Biochemistry; 2002 Jun; 41(22):6995-7000. PubMed ID: 12033932 [TBL] [Abstract][Full Text] [Related]
6. The role of phosphagen specificity loops in arginine kinase. Azzi A; Clark SA; Ellington WR; Chapman MS Protein Sci; 2004 Mar; 13(3):575-85. PubMed ID: 14978299 [TBL] [Abstract][Full Text] [Related]
7. Structural changes of creatine kinase upon substrate binding. Forstner M; Kriechbaum M; Laggner P; Wallimann T Biophys J; 1998 Aug; 75(2):1016-23. PubMed ID: 9675202 [TBL] [Abstract][Full Text] [Related]
8. The role of Arg-96 in Danio rerio creatine kinase in substrate recognition and active center configuration. Uda K; Kuwasaki A; Shima K; Matsumoto T; Suzuki T Int J Biol Macromol; 2009 Jun; 44(5):413-8. PubMed ID: 19428475 [TBL] [Abstract][Full Text] [Related]
9. Crystal structure of brain-type creatine kinase at 1.41 A resolution. Eder M; Schlattner U; Becker A; Wallimann T; Kabsch W; Fritz-Wolf K Protein Sci; 1999 Nov; 8(11):2258-69. PubMed ID: 10595529 [TBL] [Abstract][Full Text] [Related]
10. Changes of creatine kinase secondary structure induced by the release of nucleotides from caged compounds. An infrared difference-spectroscopy study. Raimbault C; Buchet R; Vial C Eur J Biochem; 1996 Aug; 240(1):134-42. PubMed ID: 8797846 [TBL] [Abstract][Full Text] [Related]
11. The tryptophan residues of mitochondrial creatine kinase: roles of Trp-223, Trp-206, and Trp-264 in active-site and quaternary structure formation. Gross M; Furter-Graves EM; Wallimann T; Eppenberger HM; Furter R Protein Sci; 1994 Jul; 3(7):1058-68. PubMed ID: 7920251 [TBL] [Abstract][Full Text] [Related]
12. Structural basis for the mechanism and substrate specificity of glycocyamine kinase, a phosphagen kinase family member. Lim K; Pullalarevu S; Surabian KT; Howard A; Suzuki T; Moult J; Herzberg O Biochemistry; 2010 Mar; 49(9):2031-41. PubMed ID: 20121101 [TBL] [Abstract][Full Text] [Related]
13. Mutagenesis of two acidic active site residues in human muscle creatine kinase: implications for the catalytic mechanism. Cantwell JS; Novak WR; Wang PF; McLeish MJ; Kenyon GL; Babbitt PC Biochemistry; 2001 Mar; 40(10):3056-61. PubMed ID: 11258919 [TBL] [Abstract][Full Text] [Related]
14. Asparagine 285 plays a key role in transition state stabilization in rabbit muscle creatine kinase. Borders CL; MacGregor KM; Edmiston PL; Gbeddy ER; Thomenius MJ; Mulligan GB; Snider MJ Protein Sci; 2003 Mar; 12(3):532-7. PubMed ID: 12592023 [TBL] [Abstract][Full Text] [Related]
15. Magnetic resonance study of the three-dimensional structure of creatine kinase-substrate complexes. Implications for substrate specificity and catalytic mechanism. McLaughlin AC; Leigh JS; Cohn M J Biol Chem; 1976 May; 251(9):2777-87. PubMed ID: 177421 [TBL] [Abstract][Full Text] [Related]
16. Induced fit in arginine kinase. Zhou G; Ellington WR; Chapman MS Biophys J; 2000 Mar; 78(3):1541-50. PubMed ID: 10692338 [TBL] [Abstract][Full Text] [Related]
17. The 1.5 A resolution crystal structure of the carbamate kinase-like carbamoyl phosphate synthetase from the hyperthermophilic Archaeon pyrococcus furiosus, bound to ADP, confirms that this thermostable enzyme is a carbamate kinase, and provides insight into substrate binding and stability in carbamate kinases. Ramón-Maiques S; Marina A; Uriarte M; Fita I; Rubio V J Mol Biol; 2000 Jun; 299(2):463-76. PubMed ID: 10860751 [TBL] [Abstract][Full Text] [Related]
18. Role of amino acid residues on the GS region of Stichopus arginine kinase and Danio creatine kinase. Uda K; Suzuki T Protein J; 2004 Jan; 23(1):53-64. PubMed ID: 15115182 [TBL] [Abstract][Full Text] [Related]
19. Induced fit in guanidino kinases--comparison of substrate-free and transition state analog structures of arginine kinase. Yousef MS; Clark SA; Pruett PK; Somasundaram T; Ellington WR; Chapman MS Protein Sci; 2003 Jan; 12(1):103-11. PubMed ID: 12493833 [TBL] [Abstract][Full Text] [Related]
20. Crystal structures of arginine kinase in complex with ADP, nitrate, and various phosphagen analogs. Clark SA; Davulcu O; Chapman MS Biochem Biophys Res Commun; 2012 Oct; 427(1):212-7. PubMed ID: 22995310 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]