These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 12437350)

  • 1. An atomic-level mechanism for molybdenum nitrogenase. Part 1. Reduction of dinitrogen.
    Durrant MC
    Biochemistry; 2002 Nov; 41(47):13934-45. PubMed ID: 12437350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An atomic-level mechanism for molybdenum nitrogenase. Part 2. Proton reduction, inhibition of dinitrogen reduction by dihydrogen, and the HD formation reaction.
    Durrant MC
    Biochemistry; 2002 Nov; 41(47):13946-55. PubMed ID: 12437351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosynthesis of the nitrogenase iron-molybdenum-cofactor from Azotobacter vinelandii.
    Frazzon J; Dean DR
    Met Ions Biol Syst; 2002; 39():163-86. PubMed ID: 11913125
    [No Abstract]   [Full Text] [Related]  

  • 4. Controlled protonation of iron-molybdenum cofactor by nitrogenase: a structural and theoretical analysis.
    Durrant MC
    Biochem J; 2001 May; 355(Pt 3):569-76. PubMed ID: 11311117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of the MoFe protein alpha-subunit histidine-195 residue in FeMo-cofactor binding and nitrogenase catalysis.
    Kim CH; Newton WE; Dean DR
    Biochemistry; 1995 Mar; 34(9):2798-808. PubMed ID: 7893691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Azotobacter vinelandii nitrogenases containing altered MoFe proteins with substitutions in the FeMo-cofactor environment: effects on the catalyzed reduction of acetylene and ethylene.
    Fisher K; Dilworth MJ; Kim CH; Newton WE
    Biochemistry; 2000 Mar; 39(11):2970-9. PubMed ID: 10715117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in the midpoint potentials of the nitrogenase metal centers as a result of iron protein-molybdenum-iron protein complex formation.
    Lanzilotta WN; Seefeldt LC
    Biochemistry; 1997 Oct; 36(42):12976-83. PubMed ID: 9335558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystallographic analysis of the MoFe protein of nitrogenase from a nifV mutant of Klebsiella pneumoniae identifies citrate as a ligand to the molybdenum of iron molybdenum cofactor (FeMoco).
    Mayer SM; Gormal CA; Smith BE; Lawson DM
    J Biol Chem; 2002 Sep; 277(38):35263-6. PubMed ID: 12133839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for a dynamic role for homocitrate during nitrogen fixation: the effect of substitution at the alpha-Lys426 position in MoFe-protein of Azotobacter vinelandii.
    Durrant MC; Francis A; Lowe DJ; Newton WE; Fisher K
    Biochem J; 2006 Jul; 397(2):261-70. PubMed ID: 16566750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New insights into structure-function relationships in nitrogenase: A 1.6 A resolution X-ray crystallographic study of Klebsiella pneumoniae MoFe-protein.
    Mayer SM; Lawson DM; Gormal CA; Roe SM; Smith BE
    J Mol Biol; 1999 Oct; 292(4):871-91. PubMed ID: 10525412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The discovery of Mo(III) in FeMoco: reuniting enzyme and model chemistry.
    Bjornsson R; Neese F; Schrock RR; Einsle O; DeBeer S
    J Biol Inorg Chem; 2015 Mar; 20(2):447-60. PubMed ID: 25549604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. X-ray emission spectroscopy evidences a central carbon in the nitrogenase iron-molybdenum cofactor.
    Lancaster KM; Roemelt M; Ettenhuber P; Hu Y; Ribbe MW; Neese F; Bergmann U; DeBeer S
    Science; 2011 Nov; 334(6058):974-7. PubMed ID: 22096198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alkyne substrate interaction within the nitrogenase MoFe protein.
    Dos Santos PC; Mayer SM; Barney BM; Seefeldt LC; Dean DR
    J Inorg Biochem; 2007 Nov; 101(11-12):1642-8. PubMed ID: 17610955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitrogenase MoFe-protein at 1.16 A resolution: a central ligand in the FeMo-cofactor.
    Einsle O; Tezcan FA; Andrade SL; Schmid B; Yoshida M; Howard JB; Rees DC
    Science; 2002 Sep; 297(5587):1696-700. PubMed ID: 12215645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The mechanism of dinitrogen reduction by molybdenum nitrogenases.
    Leigh GJ
    Eur J Biochem; 1995 Apr; 229(1):14-20. PubMed ID: 7744024
    [No Abstract]   [Full Text] [Related]  

  • 16. Structural evidence for a dynamic metallocofactor during N
    Kang W; Lee CC; Jasniewski AJ; Ribbe MW; Hu Y
    Science; 2020 Jun; 368(6497):1381-1385. PubMed ID: 32554596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for electron transfer from the nitrogenase iron protein to the molybdenum-iron protein without MgATP hydrolysis: characterization of a tight protein-protein complex.
    Lanzilotta WN; Fisher K; Seefeldt LC
    Biochemistry; 1996 Jun; 35(22):7188-96. PubMed ID: 8679547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FeMo cofactor of nitrogenase: a density functional study of states M(N), M(OX), M(R), and M(I).
    Lovell T; Li J; Liu T; Case DA; Noodleman L
    J Am Chem Soc; 2001 Dec; 123(49):12392-410. PubMed ID: 11734043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Density functional theory calculations and exploration of a possible mechanism of N2 reduction by nitrogenase.
    Huniar U; Ahlrichs R; Coucouvanis D
    J Am Chem Soc; 2004 Mar; 126(8):2588-601. PubMed ID: 14982469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of a homocitrate-free iron-molybdenum cluster on NifEN: implications for the role of homocitrate in nitrogenase assembly.
    Fay AW; Blank MA; Yoshizawa JM; Lee CC; Wiig JA; Hu Y; Hodgson KO; Hedman B; Ribbe MW
    Dalton Trans; 2010 Mar; 39(12):3124-30. PubMed ID: 20221547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.