These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 12437386)

  • 1. Conformational preferences of the base substituent in hypermodified nucleotide queuosine 5'-monophosphate 'pQ' and protonated variant 'pQH+'.
    Sonavane UB; Sonawane KD; Tewari R
    J Biomol Struct Dyn; 2002 Dec; 20(3):473-85. PubMed ID: 12437386
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational preferences of hypermodified nucleoside lysidine (k2C) occurring at "wobble" position in anticodon loop of tRNA(Ile).
    Sonawane KD; Tewari R
    Nucleosides Nucleotides Nucleic Acids; 2008 Oct; 27(10):1158-74. PubMed ID: 18788046
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational preferences of anticodon 3'-adjacent hypermodified nucleic acid base cis-or trans-zeatin and its 2-methylthio derivative, cis-or trans- ms(2)zeatin.
    Sonawane KD; Sonavane UB; Tewari R
    J Biomol Struct Dyn; 2002 Feb; 19(4):637-48. PubMed ID: 11843625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural significance of hypermodified nucleic acid base hydroxywybutine (OHyW) which occur at 37th position in the anticodon loop of yeast tRNA(Phe).
    Kumbhar NM; Kumbhar BV; Sonawane KD
    J Mol Graph Model; 2012 Sep; 38():174-85. PubMed ID: 23073221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of queuosine on tRNA structure and function.
    Morris RC; Brown KG; Elliott MS
    J Biomol Struct Dyn; 1999 Feb; 16(4):757-74. PubMed ID: 10217448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iso-energetic multiple conformations of hypermodified nucleic acid base wybutine (yW) which occur at 37(th) position in anticodon loop of tRNA(Phe).
    Kumbhar NM; Sonawane KD
    J Mol Graph Model; 2011 Jun; 29(7):935-46. PubMed ID: 21530341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational preferences of modified nucleoside N(2)-methylguanosine (m(2)G) and its derivative N(2), N(2)-dimethylguanosine (m(2)(2)G) occur at 26th position (hinge region) in tRNA.
    Bavi RS; Kamble AD; Kumbhar NM; Kumbhar BV; Sonawane KD
    Cell Biochem Biophys; 2011 Dec; 61(3):507-21. PubMed ID: 21735129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational preferences of modified nucleoside N(4)-acetylcytidine, ac4C occur at "wobble" 34th position in the anticodon loop of tRNA.
    Kumbhar BV; Kamble AD; Sonawane KD
    Cell Biochem Biophys; 2013 Jul; 66(3):797-816. PubMed ID: 23408308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Excited-state proton transfer through water bridges and structure of hydrogen-bonded complexes in 1H-pyrrolo[3,2-h]quinoline: adiabatic time-dependent density functional theory study.
    Kyrychenko A; Waluk J
    J Phys Chem A; 2006 Nov; 110(43):11958-67. PubMed ID: 17064184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of action of wobble nucleoside modifications on codon-anticodon pairing within the ribosome.
    Lim VI
    J Mol Biol; 1994 Jul; 240(1):8-19. PubMed ID: 8021943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics simulations in solvent of the glucocorticoid receptor protein in complex with a glucocorticoid response element DNA sequence.
    Harris LF; Sullivan MR; Popken-Harris PD; Hickok DF
    J Biomol Struct Dyn; 1994 Oct; 12(2):249-70. PubMed ID: 7702769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Specific and non-specific purine trap in the T-loop of normal and suppressor tRNAs.
    Doyon FR; Zagryadskaya EI; Chen J; Steinberg SV
    J Mol Biol; 2004 Oct; 343(1):55-69. PubMed ID: 15381420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Backbone-base interactions critical to quantum stabilization of transfer RNA anticodon structure.
    Witts RN; Hopson EC; Koballa DE; Van Boening TA; Hopkins NH; Patterson EV; Nagan MC
    J Phys Chem B; 2013 Jun; 117(25):7489-97. PubMed ID: 23742318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Singly and bifurcated hydrogen-bonded base-pairs in tRNA anticodon hairpins and ribozymes.
    Auffinger P; Westhof E
    J Mol Biol; 1999 Sep; 292(3):467-83. PubMed ID: 10497015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNA hydration: three nanoseconds of multiple molecular dynamics simulations of the solvated tRNA(Asp) anticodon hairpin.
    Auffinger P; Westhof E
    J Mol Biol; 1997 Jun; 269(3):326-41. PubMed ID: 9199403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. tRNA's wobble decoding of the genome: 40 years of modification.
    Agris PF; Vendeix FA; Graham WD
    J Mol Biol; 2007 Feb; 366(1):1-13. PubMed ID: 17187822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Configuration of wobble base pairs having pyrimidines as anticodon wobble bases: significance for codon degeneracy.
    Das G; Lyngdoh RH
    J Biomol Struct Dyn; 2014; 32(9):1500-20. PubMed ID: 23968386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational preferences of modified nucleic acid bases N6-methyl-N6-(N-threonylcarbonyl) adenine and 2-methylthio-N6-(N-threonylcarbonyl) adenine by the quantum chemical PCILO calculations.
    Tewari R
    J Biomol Struct Dyn; 1990 Dec; 8(3):675-86. PubMed ID: 2129236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leading RNA tertiary interactions: structures, energies, and water insertion of A-minor and P-interactions. A quantum chemical view.
    Sponer JE; Réblova K; Mokdad A; Sychrovský V; Leszczynski J; Sponer J
    J Phys Chem B; 2007 Aug; 111(30):9153-64. PubMed ID: 17602515
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wobble base-pairing in codon-anticodon interactions: a theoretical modelling study.
    Mangang SU; Lyngdoh RH
    Indian J Biochem Biophys; 2001; 38(1-2):115-9. PubMed ID: 11563322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.