These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Primers and protocols for standardized detection of minimal residual disease in acute lymphoblastic leukemia using immunoglobulin and T cell receptor gene rearrangements and TAL1 deletions as PCR targets: report of the BIOMED-1 CONCERTED ACTION: investigation of minimal residual disease in acute leukemia. Pongers-Willemse MJ; Seriu T; Stolz F; d'Aniello E; Gameiro P; Pisa P; Gonzalez M; Bartram CR; Panzer-Grümayer ER; Biondi A; San Miguel JF; van Dongen JJ Leukemia; 1999 Jan; 13(1):110-8. PubMed ID: 10049045 [TBL] [Abstract][Full Text] [Related]
23. Minimal residual disease tests provide an independent predictor of clinical outcome in adult acute lymphoblastic leukemia. Mortuza FY; Papaioannou M; Moreira IM; Coyle LA; Gameiro P; Gandini D; Prentice HG; Goldstone A; Hoffbrand AV; Foroni L J Clin Oncol; 2002 Feb; 20(4):1094-104. PubMed ID: 11844835 [TBL] [Abstract][Full Text] [Related]
24. Clinical significance of minimal residual disease at day 15 and at the end of therapy in childhood acute lymphoblastic leukaemia. Sutton R; Venn NC; Tolisano J; Bahar AY; Giles JE; Ashton LJ; Teague L; Rigutto G; Waters K; Marshall GM; Haber M; Norris MD; Br J Haematol; 2009 Aug; 146(3):292-9. PubMed ID: 19500099 [TBL] [Abstract][Full Text] [Related]
25. Minimal residual disease analysis for the prediction of relapse in children with standard-risk acute lymphoblastic leukaemia. Goulden NJ; Knechtli CJ; Garland RJ; Langlands K; Hancock JP; Potter MN; Steward CG; Oakhill A Br J Haematol; 1998 Jan; 100(1):235-44. PubMed ID: 9450818 [TBL] [Abstract][Full Text] [Related]
26. Minimal residual disease analysis in children with t(12;21)-positive acute lymphoblastic leukemia: comparison of Ig/TCR rearrangements and the genomic fusion gene. Metzler M; Mann G; Monschein U; Lodzinski M; Gall C; Flohr T; Viehmann S; Langer T; Schrappe M; Gadner H; Haas OA; Panzer-Grümayer ER Haematologica; 2006 May; 91(5):683-6. PubMed ID: 16627248 [TBL] [Abstract][Full Text] [Related]
27. Minimal residual disease monitoring in adult T-cell acute lymphoblastic leukemia: a molecular based approach using T-cell receptor G and D gene rearrangements. Gameiro P; Mortuza FY; Hoffbrand AV; Foroni L Haematologica; 2002 Nov; 87(11):1126-34. PubMed ID: 12414341 [TBL] [Abstract][Full Text] [Related]
28. A simplified minimal residual disease polymerase chain reaction method at early treatment points can stratify children with acute lymphoblastic leukemia into good and poor outcome groups. Scrideli CA; Assumpção JG; Ganazza MA; Araújo M; Toledo SR; Lee ML; Delbuono E; Petrilli AS; Queiróz RP; Biondi A; Viana MB; Yunes JA; Brandalise SR; Tone LG Haematologica; 2009 Jun; 94(6):781-9. PubMed ID: 19483156 [TBL] [Abstract][Full Text] [Related]
29. [Minimal residual disease analysis in acute lymphoblastic leukemia of childhood within the framework of COALL Study: results of an induction therapy without asparaginase]. zur Stadt U; Harms DO; Schlüter S; Jorch N; Spaar HJ; Nürnberger W; Völpel S; Gutjahr P; Schrappe M; Janka G; Kabisch H Klin Padiatr; 2000; 212(4):169-73. PubMed ID: 10994545 [TBL] [Abstract][Full Text] [Related]
30. Sequential monitoring of minimal residual disease in acute lymphoblastic leukemia: 7-year experience in a pediatric hematology/oncology unit. Katsibardi K; Moschovi MA; Braoudaki M; Papadhimitriou SI; Papathanasiou C; Tzortzatou-Stathopoulou F Leuk Lymphoma; 2010 May; 51(5):846-52. PubMed ID: 20350276 [TBL] [Abstract][Full Text] [Related]
31. Molecular relapse in adult standard-risk ALL patients detected by prospective MRD monitoring during and after maintenance treatment: data from the GMALL 06/99 and 07/03 trials. Raff T; Gökbuget N; Lüschen S; Reutzel R; Ritgen M; Irmer S; Böttcher S; Horst HA; Kneba M; Hoelzer D; Brüggemann M; Blood; 2007 Feb; 109(3):910-5. PubMed ID: 17023577 [TBL] [Abstract][Full Text] [Related]
32. Excellent outcome of minimal residual disease-defined low-risk patients is sustained with more than 10 years follow-up: results of UK paediatric acute lymphoblastic leukaemia trials 1997-2003. Bartram J; Wade R; Vora A; Hancock J; Mitchell C; Kinsey S; Steward C; Moppett J; Goulden N Arch Dis Child; 2016 May; 101(5):449-54. PubMed ID: 26865705 [TBL] [Abstract][Full Text] [Related]
33. Long-term follow-up of minimal residual disease in childhood acute lymphoblastic leukemia patients by polymerase chain reaction analysis of multiple clone-specific or malignancy-specific gene markers. Kuang S; Gu L; Dong S; Cao Q; Xu C; Huang W; Su XY; Huang QH; Xie JX; Chen SJ; Chen Z Cancer Genet Cytogenet; 1996 Jun; 88(2):110-7. PubMed ID: 8640718 [TBL] [Abstract][Full Text] [Related]
34. Quantitative analysis of minimal residual disease predicts relapse in children with B-lineage acute lymphoblastic leukemia in DFCI ALL Consortium Protocol 95-01. Zhou J; Goldwasser MA; Li A; Dahlberg SE; Neuberg D; Wang H; Dalton V; McBride KD; Sallan SE; Silverman LB; Gribben JG; Blood; 2007 Sep; 110(5):1607-11. PubMed ID: 17485550 [TBL] [Abstract][Full Text] [Related]
35. Results of minimal residual disease (MRD) evaluation and MRD-based treatment stratification in childhood ALL. Cazzaniga G; d'Aniello E; Corral L; Biondi A Best Pract Res Clin Haematol; 2002 Dec; 15(4):623-38. PubMed ID: 12617867 [TBL] [Abstract][Full Text] [Related]
36. Minimal residual disease assessment in childhood acute lymphoblastic leukaemia: a Swedish multi-centre study comparing real-time polymerase chain reaction and multicolour flow cytometry. Thörn I; Forestier E; Botling J; Thuresson B; Wasslavik C; Björklund E; Li A; Lindström-Eriksson E; Malec M; Grönlund E; Torikka K; Heldrup J; Abrahamsson J; Behrendtz M; Söderhäll S; Jacobsson S; Olofsson T; Porwit A; Lönnerholm G; Rosenquist R; Sundström C Br J Haematol; 2011 Mar; 152(6):743-53. PubMed ID: 21250970 [TBL] [Abstract][Full Text] [Related]
37. Detection of minimal residual disease in peripheral blood prior to clinical relapse of childhood acute lymphoblastic leukaemia using PCR. Lal A; Kwan E; Haber M; Norris MD; Marshall GM Mol Cell Probes; 2001 Apr; 15(2):99-103. PubMed ID: 11292328 [TBL] [Abstract][Full Text] [Related]
38. The TEL-AML1 real-time quantitative polymerase chain reaction (PCR) might replace the antigen receptor-based genomic PCR in clinical minimal residual disease studies in children with acute lymphoblastic leukaemia. de Haas V; Breunis WB; Dee R; Verhagen OJ; Kroes W; van Wering ER; van Dongen JJ; van den Berg H; van der Schoot CE Br J Haematol; 2002 Jan; 116(1):87-93. PubMed ID: 11841400 [TBL] [Abstract][Full Text] [Related]
39. Low frequency of clonotypic Ig and T-cell receptor gene rearrangements in t(4;11) infant acute lymphoblastic leukaemia and its implication for the detection of minimal residual disease. Peham M; Panzer S; Fasching K; Haas OA; Fischer S; Marschalek R; Gadner H; Panzer-Grümayer ER Br J Haematol; 2002 May; 117(2):315-21. PubMed ID: 11972513 [TBL] [Abstract][Full Text] [Related]
40. Precise quantification of minimal residual disease at day 29 allows identification of children with acute lymphoblastic leukemia and an excellent outcome. Nyvold C; Madsen HO; Ryder LP; Seyfarth J; Svejgaard A; Clausen N; Wesenberg F; Jonsson OG; Forestier E; Schmiegelow K; Blood; 2002 Feb; 99(4):1253-8. PubMed ID: 11830473 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]