BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 124377)

  • 21. Studies on the localization of the cardiac glycoside receptor.
    Smith TW; Wagner H; Markis JE; Young M
    J Clin Invest; 1972 Jul; 51(7):1777-89. PubMed ID: 4260687
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kinetic aspects of the inhibition of ATP-ase from red cell ghosts by cardiac glycosides.
    Lüllmann H; Van Zwieten PA
    Arch Int Pharmacodyn Ther; 1969 Nov; 182(1):232-40. PubMed ID: 4243758
    [No Abstract]   [Full Text] [Related]  

  • 23. Erythrocyte membrane-bound enzymes: ATPase, phosphatase and adenylate kinase in human, bovine and porcine erythrocytes.
    Heller M; Hanahan DJ
    Biochim Biophys Acta; 1972 Jan; 255(1):239-50. PubMed ID: 4334680
    [No Abstract]   [Full Text] [Related]  

  • 24. Membrane ATP and the functional organization of the red cell Na:K pump.
    Hoffman JF; Proverbio F
    Ann N Y Acad Sci; 1974; 242(0):459-60. PubMed ID: 4279598
    [No Abstract]   [Full Text] [Related]  

  • 25. Demonstration and characterization of two classes of cardiac glycoside binding sites to rat heart membrane preparations using quantitative computer modeling.
    Lutz RA; Lichtstein D; Xu H; Rodbard D
    J Recept Res; 1987; 7(5):679-94. PubMed ID: 3656272
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sodium outflux and ATPase activity in human and rabbit erythrocytes.
    Gardner JD; Lapey A
    J Appl Physiol; 1971 Jul; 31(1):161-3. PubMed ID: 4254046
    [No Abstract]   [Full Text] [Related]  

  • 27. Studies on cardioactive steroids. III. Characterization of different cardiac glycosides by their effects on contractility and rhythmicity at different extracellular potassium concentrations.
    Haustein KO; Graumann G; Stephan B
    Acta Biol Med Ger; 1975; 34(6):1065-73. PubMed ID: 1199622
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Demonstration of a phosphopeptide intermediate in the Mg ++ -dependent, Na + - and K + -stimulated adenosine triphosphatase reaction of the erythrocyte membrane.
    Avruch J; Fairbanks G
    Proc Natl Acad Sci U S A; 1972 May; 69(5):1216-20. PubMed ID: 4260901
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of highly unsaturated phosphatidylcholine on the effects of ouabain and some cardioactive drugs on cardiac contractile force and Na+, K+-ATPase activity.
    Engel H; Proppe D; Wassermann O
    Biochem Pharmacol; 1977 Mar; 26(5):381-8. PubMed ID: 139895
    [No Abstract]   [Full Text] [Related]  

  • 30. Mechanism of cardiac glycoside inhibition of the (Na+-K+)-dependent ATPase from cardiac tissue.
    Matsui H; Schwartz A
    Biochim Biophys Acta; 1968 Mar; 151(3):655-63. PubMed ID: 4230809
    [No Abstract]   [Full Text] [Related]  

  • 31. [Pharmacology of digitalis receptors].
    Godfraind T
    Bull Acad R Med Belg; 1972; 12():403-48. PubMed ID: 4267374
    [No Abstract]   [Full Text] [Related]  

  • 32. The nature of the cardiac glycoside enzyme complex: mechanism and kinetics of binding and dissociation using a high-activity heart Na+, K+-ATPase.
    Schwartz A; Lindenmayer GE; Allen JC; McCans JL
    Ann N Y Acad Sci; 1974; 242(0):577-97. PubMed ID: 4279607
    [No Abstract]   [Full Text] [Related]  

  • 33. Ouabain inhibition of adenosine triphosphatase in erythrocyte membranes from dystrophic hamsters.
    Jacobson BE; Wrogemann K; Blanchaer MC
    Enzyme; 1972; 13(5-6):324-8. PubMed ID: 4281742
    [No Abstract]   [Full Text] [Related]  

  • 34. Possible involvement of cardiac Na+, K+-adenosine triphosphatase in the mechanism of action of cardiac glycosides.
    Schwartz A; Allen JC; Harigaya S
    J Pharmacol Exp Ther; 1969 Jul; 168(1):31-41. PubMed ID: 4240030
    [No Abstract]   [Full Text] [Related]  

  • 35. High erythrocyte membrane (Na+ + K+)-ATPase in kwashiorkor, in vivo reversal by diuretic.
    Kaplay SS; Ramanadham M
    Clin Chim Acta; 1978 Aug; 88(1):89-92. PubMed ID: 150319
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reversible inhibition of (Na+ + K+)-ATPase with a cardiac glycoside.
    Ross CR; Pessah NI
    Eur J Pharmacol; 1975 Aug; 33(1):223-6. PubMed ID: 126168
    [TBL] [Abstract][Full Text] [Related]  

  • 37. ATPase and phosphatase activities from human red cell membranes. III. Stimulation of K+-activated phosphatase by phospholipase C.
    Richards DE; Garrahan PJ; Rega AF
    J Membr Biol; 1977 Jun; 35(2):137-47. PubMed ID: 142159
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional organization of the partial reactions of Na plus and K plus-activated ATPase within the red cell membrane.
    Askari A; Rao SN
    Biochem Biophys Res Commun; 1969 Aug; 36(4):631-8. PubMed ID: 4241335
    [No Abstract]   [Full Text] [Related]  

  • 39. Na+-ATPase of mammalian erythrocyte membranes: kinetic changes associated with postnatal development and following active erythropoiesis.
    Blostein R; Whittington ES; Kuebler ES
    Ann N Y Acad Sci; 1974; 242(0):305-16. PubMed ID: 4279593
    [No Abstract]   [Full Text] [Related]  

  • 40. Relation between digitalis binding in vivo and inhibition of sodium, potassium-adenosine triphosphatase in canine kidney.
    Allen JC; Martinez-Maldonado M; Eknoyan G; Suki WN; Schwartz A
    Biochem Pharmacol; 1971 Jan; 20(1):73-80. PubMed ID: 4255110
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.