These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 12437851)

  • 41. Effect of ship motion on spinal loading during manual lifting.
    Faber GS; Kingma I; Delleman NJ; van Dieën JH
    Ergonomics; 2008 Sep; 51(9):1426-40. PubMed ID: 18802823
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Does the personal lift-assist device affect the local dynamic stability of the spine during lifting?
    Graham RB; Sadler EM; Stevenson JM
    J Biomech; 2011 Feb; 44(3):461-6. PubMed ID: 21030023
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Relation between spinal load factors and the high-risk probability of occupational low-back disorder.
    Granata KP; Marras WS
    Ergonomics; 1999 Sep; 42(9):1187-99. PubMed ID: 10503053
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Assessment of an EMG-based method for continuous estimates of low back compression during asymmetrical occupational tasks.
    Mientjes MI; Norman RW; Wells RP; McGill SM
    Ergonomics; 1999 Jun; 42(6):868-79. PubMed ID: 10340027
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Muscle fatigue and fatigue-related biomechanical changes during a cyclic lifting task.
    Bonato P; Ebenbichler GR; Roy SH; Lehr S; Posch M; Kollmitzer J; Della Croce U
    Spine (Phila Pa 1976); 2003 Aug; 28(16):1810-20. PubMed ID: 12923468
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Influence of body segment dynamics on loads at the lumbar spine during lifting.
    Tsuang YH; Schipplein OD; Trafimow JH; Andersson GB
    Ergonomics; 1992 Apr; 35(4):437-44. PubMed ID: 1597174
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of initial horizontal object position on peak L5/S1 moments in manual lifting is dependent on task type and familiarity with alternative lifting strategies.
    Faber GS; Kingma I; van Dieën JH
    Ergonomics; 2011 Jan; 54(1):72-81. PubMed ID: 21181590
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A biomechanical analysis of anterior load carriage.
    Anderson AM; Meador KA; McClure LR; Makrozahopoulos D; Brooks DJ; Mirka GA
    Ergonomics; 2007 Dec; 50(12):2104-17. PubMed ID: 17852376
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Does team lifting increase the variability in peak lumbar compression in ironworkers?
    Faber G; Visser S; van der Molen HF; Kuijer PP; Hoozemans MJ; Van Dieën JH; Frings-Dresen MH
    Work; 2012; 41 Suppl 1():4171-3. PubMed ID: 22317361
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mathematical and empirical proof of principle for an on-body personal lift augmentation device (PLAD).
    Abdoli-Eramaki M; Stevenson JM; Reid SA; Bryant TJ
    J Biomech; 2007; 40(8):1694-700. PubMed ID: 17466313
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of changes in lordosis on mechanics of the lumbar spine-lumbar curvature in lifting.
    Shirazi-Adl A; Parnianpour M
    J Spinal Disord; 1999 Oct; 12(5):436-47. PubMed ID: 10549710
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Changes in the surface EMG signal and the biomechanics of motion during a repetitive lifting task.
    Bonato P; Boissy P; Della Croce U; Roy SH
    IEEE Trans Neural Syst Rehabil Eng; 2002 Mar; 10(1):38-47. PubMed ID: 12173738
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Anticipatory control of vertical lifting force and momentum during the squat lift with expected and unexpected loads.
    Heiss DG; Shields RK; Yack HJ
    J Orthop Sports Phys Ther; 2001 Dec; 31(12):708-23; discussion 724-9. PubMed ID: 11767247
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Spine loading as a function of lift frequency, exposure duration, and work experience.
    Marras WS; Parakkat J; Chany AM; Yang G; Burr D; Lavender SA
    Clin Biomech (Bristol, Avon); 2006 May; 21(4):345-52. PubMed ID: 16310299
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Dynamic versus static analyses of lifting a box from the floor.
    Menzer HM; Reiser RF
    Biomed Sci Instrum; 2005; 41():305-10. PubMed ID: 15850123
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of box features on spine loading during warehouse order selecting.
    Marras WS; Granata KP; Davis KG; Allread WG; Jorgensen MJ
    Ergonomics; 1999 Jul; 42(7):980-96. PubMed ID: 10424186
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biomechanical assessment of lateral stiffness elements in the suspension system of a backpack.
    Reid SA; Stevenson JM; Whiteside RA
    Ergonomics; 2004 Oct; 47(12):1272-81. PubMed ID: 15370847
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Loads on spinal tissues during simultaneous lifting and ventilatory challenge.
    McGill SM; Sharratt MT; Seguin JP
    Ergonomics; 1995 Sep; 38(9):1772-92. PubMed ID: 7671856
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A braced arm-to-thigh (BATT) lifting technique reduces lumbar spine loads in healthy and low back pain participants.
    Beaucage-Gauvreau E; Brandon SCE; Robertson WSP; Fraser R; Freeman BJC; Graham RB; Thewlis D; Jones CF
    J Biomech; 2020 Feb; 100():109584. PubMed ID: 31898975
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Unilateral ankle immobilization alters the kinematics and kinetics of lifting.
    Beach TA; Frost DM; Clark JM; Maly MR; Callaghan JP
    Work; 2014; 47(2):221-34. PubMed ID: 23324721
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.