These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103 related articles for article (PubMed ID: 12438123)
1. Localization of phosphatidylinositol 4,5-P(2) important in exocytosis and a quantitative analysis of chromaffin granule motion adjacent to the plasma membrane. Holz RW; Axelrod D Ann N Y Acad Sci; 2002 Oct; 971():232-43. PubMed ID: 12438123 [TBL] [Abstract][Full Text] [Related]
2. A pleckstrin homology domain specific for phosphatidylinositol 4, 5-bisphosphate (PtdIns-4,5-P2) and fused to green fluorescent protein identifies plasma membrane PtdIns-4,5-P2 as being important in exocytosis. Holz RW; Hlubek MD; Sorensen SD; Fisher SK; Balla T; Ozaki S; Prestwich GD; Stuenkel EL; Bittner MA J Biol Chem; 2000 Jun; 275(23):17878-85. PubMed ID: 10747966 [TBL] [Abstract][Full Text] [Related]
3. Analysis of the late steps of exocytosis: biochemical and total internal reflection fluorescence microscopy (TIRFM) studies. Holz RW Cell Mol Neurobiol; 2006; 26(4-6):439-47. PubMed ID: 16625428 [TBL] [Abstract][Full Text] [Related]
4. Identification of secretory granule phosphatidylinositol 4,5-bisphosphate-interacting proteins using an affinity pulldown strategy. Osborne SL; Wallis TP; Jimenez JL; Gorman JJ; Meunier FA Mol Cell Proteomics; 2007 Jul; 6(7):1158-69. PubMed ID: 17449848 [TBL] [Abstract][Full Text] [Related]
5. Secretory granule behaviour adjacent to the plasma membrane before and during exocytosis: total internal reflection fluorescence microscopy studies. Holz RW; Axelrod D Acta Physiol (Oxf); 2008 Feb; 192(2):303-7. PubMed ID: 18021319 [TBL] [Abstract][Full Text] [Related]
7. PtdIns(4,5)P Omar-Hmeadi M; Gandasi NR; Barg S Traffic; 2018 Jun; 19(6):436-445. PubMed ID: 29542271 [TBL] [Abstract][Full Text] [Related]
8. Phosphatidylinositol(4,5)bisphosphate coordinates actin-mediated mobilization and translocation of secretory vesicles to the plasma membrane of chromaffin cells. Wen PJ; Osborne SL; Zanin M; Low PC; Wang HT; Schoenwaelder SM; Jackson SP; Wedlich-Söldner R; Vanhaesebroeck B; Keating DJ; Meunier FA Nat Commun; 2011 Oct; 2():491. PubMed ID: 21971506 [TBL] [Abstract][Full Text] [Related]
9. Elimination of plasma membrane phosphatidylinositol (4,5)-bisphosphate is required for exocytosis from mast cells. Hammond GR; Dove SK; Nicol A; Pinxteren JA; Zicha D; Schiavo G J Cell Sci; 2006 May; 119(Pt 10):2084-94. PubMed ID: 16687737 [TBL] [Abstract][Full Text] [Related]
10. Restriction of secretory granule motion near the plasma membrane of chromaffin cells. Johns LM; Levitan ES; Shelden EA; Holz RW; Axelrod D J Cell Biol; 2001 Apr; 153(1):177-90. PubMed ID: 11285284 [TBL] [Abstract][Full Text] [Related]
11. Identification of a potential effector pathway for the trimeric Go protein associated with secretory granules. Go stimulates a granule-bound phosphatidylinositol 4-kinase by activating RhoA in chromaffin cells. Gasman S; Chasserot-Golaz S; Hubert P; Aunis D; Bader MF J Biol Chem; 1998 Jul; 273(27):16913-20. PubMed ID: 9642253 [TBL] [Abstract][Full Text] [Related]
12. Phosphatidylinositol 3-kinase C2alpha is essential for ATP-dependent priming of neurosecretory granule exocytosis. Meunier FA; Osborne SL; Hammond GR; Cooke FT; Parker PJ; Domin J; Schiavo G Mol Biol Cell; 2005 Oct; 16(10):4841-51. PubMed ID: 16055506 [TBL] [Abstract][Full Text] [Related]
13. Chromaffin granule-associated phosphatidylinositol 4-kinase activity is required for stimulated secretion. Wiedemann C; Schäfer T; Burger MM EMBO J; 1996 May; 15(9):2094-101. PubMed ID: 8641275 [TBL] [Abstract][Full Text] [Related]
14. Evidence that the inositol phospholipids are necessary for exocytosis. Loss of inositol phospholipids and inhibition of secretion in permeabilized cells caused by a bacterial phospholipase C and removal of ATP. Eberhard DA; Cooper CL; Low MG; Holz RW Biochem J; 1990 May; 268(1):15-25. PubMed ID: 2160809 [TBL] [Abstract][Full Text] [Related]
15. Localized topological changes of the plasma membrane upon exocytosis visualized by polarized TIRFM. Anantharam A; Onoa B; Edwards RH; Holz RW; Axelrod D J Cell Biol; 2010 Feb; 188(3):415-28. PubMed ID: 20142424 [TBL] [Abstract][Full Text] [Related]
16. HIV-1 Tat protein inhibits neurosecretion by binding to phosphatidylinositol 4,5-bisphosphate. Tryoen-Tóth P; Chasserot-Golaz S; Tu A; Gherib P; Bader MF; Beaumelle B; Vitale N J Cell Sci; 2013 Jan; 126(Pt 2):454-63. PubMed ID: 23178941 [TBL] [Abstract][Full Text] [Related]
17. Monitoring of exocytosis and endocytosis of insulin secretory granules in the pancreatic beta-cell line MIN6 using pH-sensitive green fluorescent protein (pHluorin) and confocal laser microscopy. Ohara-Imaizumi M; Nakamichi Y; Tanaka T; Katsuta H; Ishida H; Nagamatsu S Biochem J; 2002 Apr; 363(Pt 1):73-80. PubMed ID: 11903049 [TBL] [Abstract][Full Text] [Related]
18. Visualization of regulated exocytosis with a granule-membrane probe using total internal reflection microscopy. Allersma MW; Wang L; Axelrod D; Holz RW Mol Biol Cell; 2004 Oct; 15(10):4658-68. PubMed ID: 15282339 [TBL] [Abstract][Full Text] [Related]
19. Quantifying exocytosis by combination of membrane capacitance measurements and total internal reflection fluorescence microscopy in chromaffin cells. Becherer U; Pasche M; Nofal S; Hof D; Matti U; Rettig J PLoS One; 2007 Jun; 2(6):e505. PubMed ID: 17551585 [TBL] [Abstract][Full Text] [Related]
20. Plasmalemmal phosphatidylinositol-4,5-bisphosphate level regulates the releasable vesicle pool size in chromaffin cells. Milosevic I; Sørensen JB; Lang T; Krauss M; Nagy G; Haucke V; Jahn R; Neher E J Neurosci; 2005 Mar; 25(10):2557-65. PubMed ID: 15758165 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]