These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

446 related articles for article (PubMed ID: 12438524)

  • 1. Passive permeability and P-glycoprotein-mediated efflux differentiate central nervous system (CNS) and non-CNS marketed drugs.
    Mahar Doan KM; Humphreys JE; Webster LO; Wring SA; Shampine LJ; Serabjit-Singh CJ; Adkison KK; Polli JW
    J Pharmacol Exp Ther; 2002 Dec; 303(3):1029-37. PubMed ID: 12438524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro P-glycoprotein assays to predict the in vivo interactions of P-glycoprotein with drugs in the central nervous system.
    Feng B; Mills JB; Davidson RE; Mireles RJ; Janiszewski JS; Troutman MD; de Morais SM
    Drug Metab Dispos; 2008 Feb; 36(2):268-75. PubMed ID: 17962372
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional role of P-glycoprotein in limiting intestinal absorption of drugs: contribution of passive permeability to P-glycoprotein mediated efflux transport.
    Varma MV; Sateesh K; Panchagnula R
    Mol Pharm; 2005; 2(1):12-21. PubMed ID: 15804173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rational use of in vitro P-glycoprotein assays in drug discovery.
    Polli JW; Wring SA; Humphreys JE; Huang L; Morgan JB; Webster LO; Serabjit-Singh CS
    J Pharmacol Exp Ther; 2001 Nov; 299(2):620-8. PubMed ID: 11602674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving the in vitro prediction of in vivo central nervous system penetration: integrating permeability, P-glycoprotein efflux, and free fractions in blood and brain.
    Summerfield SG; Stevens AJ; Cutler L; del Carmen Osuna M; Hammond B; Tang SP; Hersey A; Spalding DJ; Jeffrey P
    J Pharmacol Exp Ther; 2006 Mar; 316(3):1282-90. PubMed ID: 16330496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro p-glycoprotein inhibition assays for assessment of clinical drug interaction potential of new drug candidates: a recommendation for probe substrates.
    Rautio J; Humphreys JE; Webster LO; Balakrishnan A; Keogh JP; Kunta JR; Serabjit-Singh CJ; Polli JW
    Drug Metab Dispos; 2006 May; 34(5):786-92. PubMed ID: 16455806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Progress in brain penetration evaluation in drug discovery and development.
    Liu X; Chen C; Smith BJ
    J Pharmacol Exp Ther; 2008 May; 325(2):349-56. PubMed ID: 18203948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Central nervous system drug disposition: the relationship between in situ brain permeability and brain free fraction.
    Summerfield SG; Read K; Begley DJ; Obradovic T; Hidalgo IJ; Coggon S; Lewis AV; Porter RA; Jeffrey P
    J Pharmacol Exp Ther; 2007 Jul; 322(1):205-13. PubMed ID: 17405866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of the MDR-MDCK cell line as a permeability screen for the blood-brain barrier.
    Wang Q; Rager JD; Weinstein K; Kardos PS; Dobson GL; Li J; Hidalgo IJ
    Int J Pharm; 2005 Jan; 288(2):349-59. PubMed ID: 15620875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of drug efflux transporters in the brain for drug disposition and treatment of brain diseases.
    Löscher W; Potschka H
    Prog Neurobiol; 2005 May; 76(1):22-76. PubMed ID: 16011870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Steady-state brain concentrations of antihistamines in rats: interplay of membrane permeability, P-glycoprotein efflux and plasma protein binding.
    Mahar Doan KM; Wring SA; Shampine LJ; Jordan KH; Bishop JP; Kratz J; Yang E; Serabjit-Singh CJ; Adkison KK; Polli JW
    Pharmacology; 2004 Oct; 72(2):92-8. PubMed ID: 15331914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of pluronic effect on P-glycoprotein efflux system in blood-brain barrier: contributions of energy depletion and membrane fluidization.
    Batrakova EV; Li S; Vinogradov SV; Alakhov VY; Miller DW; Kabanov AV
    J Pharmacol Exp Ther; 2001 Nov; 299(2):483-93. PubMed ID: 11602658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Utility of unbound plasma drug levels and P-glycoprotein transport data in prediction of central nervous system exposure.
    He H; Lyons KA; Shen X; Yao Z; Bleasby K; Chan G; Hafey M; Li X; Xu S; Salituro GM; Cohen LH; Tang W
    Xenobiotica; 2009 Sep; 39(9):687-93. PubMed ID: 19569734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimal structure requirements for pluronic block copolymers in modifying P-glycoprotein drug efflux transporter activity in bovine brain microvessel endothelial cells.
    Batrakova EV; Li S; Alakhov VY; Miller DW; Kabanov AV
    J Pharmacol Exp Ther; 2003 Feb; 304(2):845-54. PubMed ID: 12538842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Blood-brain barrier permeation models: discriminating between potential CNS and non-CNS drugs including P-glycoprotein substrates.
    Adenot M; Lahana R
    J Chem Inf Comput Sci; 2004; 44(1):239-48. PubMed ID: 14741033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of P-glycoprotein-mediated efflux on cerebrospinal fluid concentrations in rhesus monkeys.
    Tang C; Kuo Y; Pudvah NT; Ellis JD; Michener MS; Egbertson M; Graham SL; Cook JJ; Hochman JH; Prueksaritanont T
    Biochem Pharmacol; 2009 Sep; 78(6):642-7. PubMed ID: 19481060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of Pgp function by boswellic acids.
    Weber CC; Reising K; Müller WE; Schubert-Zsilavecz M; Abdel-Tawab M
    Planta Med; 2006 May; 72(6):507-13. PubMed ID: 16773534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipid excipients Peceol and Gelucire 44/14 decrease P-glycoprotein mediated efflux of rhodamine 123 partially due to modifying P-glycoprotein protein expression within Caco-2 cells.
    Sachs-Barrable K; Thamboo A; Lee SD; Wasan KM
    J Pharm Pharm Sci; 2007; 10(3):319-31. PubMed ID: 17727795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of P-glycoprotein-mediated multidrug resistance by acceleration of passive drug permeation across the plasma membrane.
    Regev R; Katzir H; Yeheskely-Hayon D; Eytan GD
    FEBS J; 2007 Dec; 274(23):6204-14. PubMed ID: 17986257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frog intestinal sac as an in vitro method for the assessment of intestinal permeability in humans: Application to carrier transported drugs.
    Franco M; Lopedota A; Trapani A; Cutrignelli A; Meleleo D; Micelli S; Trapani G
    Int J Pharm; 2008 Mar; 352(1-2):182-8. PubMed ID: 18055143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.