These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 12438565)

  • 1. Trifunctional chemical probes for the consolidated detection and identification of enzyme activities from complex proteomes.
    Adam GC; Sorensen EJ; Cravatt BF
    Mol Cell Proteomics; 2002 Oct; 1(10):828-35. PubMed ID: 12438565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomic profiling of mechanistically distinct enzyme classes using a common chemotype.
    Adam GC; Sorensen EJ; Cravatt BF
    Nat Biotechnol; 2002 Aug; 20(8):805-9. PubMed ID: 12091914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteomic profiling of metalloprotease activities with cocktails of active-site probes.
    Sieber SA; Niessen S; Hoover HS; Cravatt BF
    Nat Chem Biol; 2006 May; 2(5):274-81. PubMed ID: 16565715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tagging and detection strategies for activity-based proteomics.
    Sadaghiani AM; Verhelst SH; Bogyo M
    Curr Opin Chem Biol; 2007 Feb; 11(1):20-8. PubMed ID: 17174138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional proteomic profiling of glycan-processing enzymes.
    Stubbs KA; Vocadlo DJ
    Methods Enzymol; 2006; 415():253-68. PubMed ID: 17116479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping enzyme active sites in complex proteomes.
    Adam GC; Burbaum J; Kozarich JW; Patricelli MP; Cravatt BF
    J Am Chem Soc; 2004 Feb; 126(5):1363-8. PubMed ID: 14759193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activity-based protein profiling of infected plants.
    Kaschani F; Gu C; van der Hoorn RA
    Methods Mol Biol; 2012; 835():47-59. PubMed ID: 22183646
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Profiling serine hydrolase activities in complex proteomes.
    Kidd D; Liu Y; Cravatt BF
    Biochemistry; 2001 Apr; 40(13):4005-15. PubMed ID: 11300781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A tandem orthogonal proteolysis strategy for high-content chemical proteomics.
    Speers AE; Cravatt BF
    J Am Chem Soc; 2005 Jul; 127(28):10018-9. PubMed ID: 16011363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescent profiling of modular biosynthetic enzymes by complementary metabolic and activity based probes.
    Meier JL; Mercer AC; Burkart MD
    J Am Chem Soc; 2008 Apr; 130(16):5443-5. PubMed ID: 18376827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct visualization of serine hydrolase activities in complex proteomes using fluorescent active site-directed probes.
    Patricelli MP; Giang DK; Stamp LM; Burbaum JJ
    Proteomics; 2001 Sep; 1(9):1067-71. PubMed ID: 11990500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. "Fishing" for the functional proteome.
    Gerlt JA
    Nat Biotechnol; 2002 Aug; 20(8):786-7. PubMed ID: 12148003
    [No Abstract]   [Full Text] [Related]  

  • 13. Activity-based protein profiling for the functional annotation of enzymes.
    Barglow KT; Cravatt BF
    Nat Methods; 2007 Oct; 4(10):822-7. PubMed ID: 17901872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of matrix metalloproteinase active forms in complex proteomes: evaluation of affinity versus photoaffinity capture.
    Bregant S; Huillet C; Devel L; Dabert-Gay AS; Beau F; Thai R; Czarny B; Yiotakis A; Dive V
    J Proteome Res; 2009 May; 8(5):2484-94. PubMed ID: 19271733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein profiling of active cysteine cathepsins in living cells using an activity-based probe containing a cell-penetrating peptide.
    Fan F; Nie S; Dammer EB; Duong DM; Pan D; Ping L; Zhai L; Wu J; Hong X; Qin L; Xu P; Zhang YH
    J Proteome Res; 2012 Dec; 11(12):5763-72. PubMed ID: 23082807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrasensitive, multiplexed chemoproteomic profiling with soluble activity-dependent proximity ligation.
    Li G; Eckert MA; Chang JW; Montgomery JE; Chryplewicz A; Lengyel E; Moellering RE
    Proc Natl Acad Sci U S A; 2019 Oct; 116(43):21493-21500. PubMed ID: 31591248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Induction of 3beta-hydroxysteroid dehydrogenase/delta5-delta4 isomerase type 1 gene transcription in human breast cancer cell lines and in normal mammary epithelial cells by interleukin-4 and interleukin-13.
    Gingras S; Moriggl R; Groner B; Simard J
    Mol Endocrinol; 1999 Jan; 13(1):66-81. PubMed ID: 9892013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epoxide electrophiles as activity-dependent cysteine protease profiling and discovery tools.
    Greenbaum D; Medzihradszky KF; Burlingame A; Bogyo M
    Chem Biol; 2000 Aug; 7(8):569-81. PubMed ID: 11048948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and testing of mechanism-based protein-profiling probes for retaining endo-glycosidases.
    Williams SJ; Hekmat O; Withers SG
    Chembiochem; 2006 Jan; 7(1):116-24. PubMed ID: 16397879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical approaches for functionally probing the proteome.
    Greenbaum D; Baruch A; Hayrapetian L; Darula Z; Burlingame A; Medzihradszky KF; Bogyo M
    Mol Cell Proteomics; 2002 Jan; 1(1):60-8. PubMed ID: 12096141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.