BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 12438764)

  • 1. K(+) transport and volume regulatory response by NKCC in resting rat hindlimb skeletal muscle.
    Lindinger MI; Hawke TJ; Lipskie SL; Schaefer HD; Vickery L
    Cell Physiol Biochem; 2002; 12(5-6):279-92. PubMed ID: 12438764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An integrative, in situ approach to examining K+ flux in resting skeletal muscle.
    Lindinger MI; Hawke TJ; Vickery L; Bradford L; Lipskie SL
    Can J Physiol Pharmacol; 2001 Dec; 79(12):996-1006. PubMed ID: 11824943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Volume regulation in mammalian skeletal muscle: the role of sodium-potassium-chloride cotransporters during exposure to hypertonic solutions.
    Lindinger MI; Leung M; Trajcevski KE; Hawke TJ
    J Physiol; 2011 Jun; 589(Pt 11):2887-99. PubMed ID: 21486779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. K+ transport in resting rat hind-limb skeletal muscle in response to paraxanthine, a caffeine metabolite.
    Hawke TJ; Willmets RG; Lindinger MI
    Can J Physiol Pharmacol; 1999 Nov; 77(11):835-43. PubMed ID: 10593655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ouabain stimulates unidirectional and net potassium efflux in resting mammalian skeletal muscle.
    Hawke TJ; Lessard S; Vickery L; Lipskie SL; Lindinger MI
    Can J Physiol Pharmacol; 2001 Nov; 79(11):932-41. PubMed ID: 11760095
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Signalling mechanisms underlying the rapid and additive stimulation of NKCC activity by insulin and hypertonicity in rat L6 skeletal muscle cells.
    Zhao H; Hyde R; Hundal HS
    J Physiol; 2004 Oct; 560(Pt 1):123-36. PubMed ID: 15284343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Apparent intermediate K conductance channel hyposmotic activation in human lens epithelial cells.
    Lauf PK; Misri S; Chimote AA; Adragna NC
    Am J Physiol Cell Physiol; 2008 Mar; 294(3):C820-32. PubMed ID: 18184876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The roles of the Na+/K+-ATPase, NKCC, and K+ channels in regulating local sweating and cutaneous blood flow during exercise in humans in vivo.
    Louie JC; Fujii N; Meade RD; Kenny GP
    Physiol Rep; 2016 Nov; 4(22):. PubMed ID: 27881572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An in vitro analysis of intestinal ammonia transport in fasted and fed freshwater rainbow trout: roles of NKCC, K
    Rubino JG; Wilson JM; Wood CM
    J Comp Physiol B; 2019 Oct; 189(5):549-566. PubMed ID: 31486919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of potassium transport in human lens epithelial cells.
    Lauf PK; Warwar R; Brown TL; Adragna NC
    Exp Eye Res; 2006 Jan; 82(1):55-64. PubMed ID: 16002066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluoxetine inhibits K(+) transport pathways (K(+) efflux, Na(+)-K(+)-2Cl(-) cotransport, and Na(+) pump) underlying volume regulation in corneal endothelial cells.
    Hara E; Reinach PS; Wen Q; Iserovich P; Fischbarg J
    J Membr Biol; 1999 Sep; 171(1):75-85. PubMed ID: 10485996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane potential stabilization in amphibian skeletal muscle fibres in hypertonic solutions.
    Ferenczi EA; Fraser JA; Chawla S; Skepper JN; Schwiening CJ; Huang CL
    J Physiol; 2004 Mar; 555(Pt 2):423-38. PubMed ID: 14694151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of Na(+)-K(+)-2Cl- cotransporter activity in rat skeletal muscle and intestinal epithelial cells.
    Gosmanov AR; Thomason DB
    Tsitologiia; 2003; 45(8):812-6. PubMed ID: 15216633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In isolated skeletal muscle, excitation may increase extracellular K+ 10-fold; how can contractility be maintained?
    Clausen T
    Exp Physiol; 2011 Mar; 96(3):356-68. PubMed ID: 21123362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of NKCC in BK channel-mediated net K⁺ secretion in the CCD.
    Liu W; Schreck C; Coleman RA; Wade JB; Hernandez Y; Zavilowitz B; Warth R; Kleyman TR; Satlin LM
    Am J Physiol Renal Physiol; 2011 Nov; 301(5):F1088-97. PubMed ID: 21816753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Na+ -K+ -2Cl- cotransporter is implicated in gender differences in the response of the rat aorta to phenylephrine.
    Palacios J; Espinoza F; Munita C; Cifuentes F; Michea L
    Br J Pharmacol; 2006 Aug; 148(7):964-72. PubMed ID: 16799647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduced Na-K pump but increased Na-K-2Cl cotransporter in aorta of streptozotocin-induced diabetic rat.
    Michea L; Irribarra V; Goecke IA; Marusic ET
    Am J Physiol Heart Circ Physiol; 2001 Feb; 280(2):H851-8. PubMed ID: 11158986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pathways for K+ transport across the bovine articular chondrocyte membrane and their sensitivity to cell volume.
    Hall AC; Starks I; Shoults CL; Rashidbigi S
    Am J Physiol; 1996 May; 270(5 Pt 1):C1300-10. PubMed ID: 8967429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of hyperoxia on type II cell Na-K-ATPase function and expression.
    Carter EP; Wangensteen OD; O'Grady SM; Ingbar DH
    Am J Physiol; 1997 Mar; 272(3 Pt 1):L542-51. PubMed ID: 9124612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exercise-induced changes in plasma composition increase erythrocyte Na+,K+-ATPase, but not Na+-K+-2Cl- cotransporter, activity to stimulate net and unidirectional K+ transport in humans.
    Lindinger MI; Grudzien SP
    J Physiol; 2003 Dec; 553(Pt 3):987-97. PubMed ID: 14528028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.