These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 12440364)

  • 1. Propriospinal neurons involved in the control of locomotion: potential targets for repair strategies?
    Jordan LM; Schmidt BJ
    Prog Brain Res; 2002; 137():125-39. PubMed ID: 12440364
    [No Abstract]   [Full Text] [Related]  

  • 2. The cat model of spinal injury.
    Rossignol S; Chau C; Giroux N; Brustein E; Bouyer L; Marcoux J; Langlet C; Barthelémy D; Provencher J; Leblond H; Barbeau H; Reader TA
    Prog Brain Res; 2002; 137():151-68. PubMed ID: 12440366
    [No Abstract]   [Full Text] [Related]  

  • 3. Locomotor performance and adaptation after partial or complete spinal cord lesions in the cat.
    Rossignol S; Drew T; Brustein E; Jiang W
    Prog Brain Res; 1999; 123():349-65. PubMed ID: 10635730
    [No Abstract]   [Full Text] [Related]  

  • 4. Failure analysis of stepping in adult spinal cats.
    de Leon RD; London NJ; Roy RR; Edgerton VR
    Prog Brain Res; 1999; 123():341-8. PubMed ID: 10635729
    [No Abstract]   [Full Text] [Related]  

  • 5. Descending propriospinal neurons in normal and spinal cord-transected lamprey.
    Rouse DT; McClellan AD
    Exp Neurol; 1997 Jul; 146(1):113-24. PubMed ID: 9225744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensory and descending motor circuitry during development and injury.
    Plant GW; Weinrich JA; Kaltschmidt JA
    Curr Opin Neurobiol; 2018 Dec; 53():156-161. PubMed ID: 30205323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrical spinal cord stimulation must preserve proprioception to enable locomotion in humans with spinal cord injury.
    Formento E; Minassian K; Wagner F; Mignardot JB; Le Goff-Mignardot CG; Rowald A; Bloch J; Micera S; Capogrosso M; Courtine G
    Nat Neurosci; 2018 Dec; 21(12):1728-1741. PubMed ID: 30382196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proprioception: Bottom-up directive for motor recovery after spinal cord injury.
    Takeoka A
    Neurosci Res; 2020 May; 154():1-8. PubMed ID: 31336141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The spinal locomotor CPG: a target after spinal cord injury.
    Grillner S
    Prog Brain Res; 2002; 137():97-108. PubMed ID: 12440362
    [No Abstract]   [Full Text] [Related]  

  • 10. Intraspinal stimulation caudal to spinal cord transections in rats. Testing the propriospinal hypothesis.
    Yakovenko S; Kowalczewski J; Prochazka A
    J Neurophysiol; 2007 Mar; 97(3):2570-4. PubMed ID: 17215510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Seeking significance for transcutaneous spinal DC stimulation.
    Lamy JC; Boakye M
    Clin Neurophysiol; 2013 Jun; 124(6):1049-50. PubMed ID: 23403262
    [No Abstract]   [Full Text] [Related]  

  • 12. Control of fine movements mediated by propriospinal neurons.
    Blagoveshchenskii ED; Pettersson LG; Perfil'ev SN
    Neurosci Behav Physiol; 2005 Mar; 35(3):299-304. PubMed ID: 15875492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential of adult mammalian lumbosacral spinal cord to execute and acquire improved locomotion in the absence of supraspinal input.
    Edgerton VR; Roy RR; Hodgson JA; Prober RJ; de Guzman CP; de Leon R
    J Neurotrauma; 1992 Mar; 9 Suppl 1():S119-28. PubMed ID: 1588602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural plasticity after human spinal cord injury: application of locomotor training to the rehabilitation of walking.
    Harkema SJ
    Neuroscientist; 2001 Oct; 7(5):455-68. PubMed ID: 11597104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Is there a central pattern generator in man?
    Illis LS
    Paraplegia; 1995 May; 33(5):239-40. PubMed ID: 7630646
    [No Abstract]   [Full Text] [Related]  

  • 16. Retrogradely Transportable Lentivirus Tracers for Mapping Spinal Cord Locomotor Circuits.
    Sheikh IS; Keefe KM; Sterling NA; Junker IP; Eneanya CI; Liu Y; Tang XQ; Smith GM
    Front Neural Circuits; 2018; 12():60. PubMed ID: 30090059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methods to assess the development and recovery of locomotor function after spinal cord injury in rats.
    Kunkel-Bagden E; Dai HN; Bregman BS
    Exp Neurol; 1993 Feb; 119(2):153-64. PubMed ID: 8432357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time course of locomotor recovery and functional regeneration in spinal cord-transected lamprey: in vitro preparations.
    McClellan AD
    J Neurophysiol; 1994 Aug; 72(2):847-60. PubMed ID: 7983540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Locomotor capacity attributable to step training versus spontaneous recovery after spinalization in adult cats.
    de Leon RD; Hodgson JA; Roy RR; Edgerton VR
    J Neurophysiol; 1998 Mar; 79(3):1329-40. PubMed ID: 9497414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the cellular bases of vertebrate locomotion.
    Grillner S; Wallén P
    Prog Brain Res; 1999; 123():297-309. PubMed ID: 10635725
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.