These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 12440364)

  • 21. Recovery of function after spinal cord hemisection in newborn and adult rats: differential effects on reflex and locomotor function.
    Kunkel-Bagden E; Dai HN; Bregman BS
    Exp Neurol; 1992 Apr; 116(1):40-51. PubMed ID: 1559563
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Differential vulnerability of propriospinal tract neurons to spinal cord contusion injury.
    Conta AC; Stelzner DJ
    J Comp Neurol; 2004 Nov; 479(4):347-59. PubMed ID: 15514981
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Proprioception and locomotor disorders.
    Dietz V
    Nat Rev Neurosci; 2002 Oct; 3(10):781-90. PubMed ID: 12360322
    [No Abstract]   [Full Text] [Related]  

  • 24. Magnetically evoked inter-enlargement response: an assessment of ascending propriospinal fibers following spinal cord injury.
    Beaumont E; Onifer SM; Reed WR; Magnuson DS
    Exp Neurol; 2006 Oct; 201(2):428-40. PubMed ID: 16797539
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of a human neuro-musculo-skeletal model for investigation of spinal cord injury.
    Paul C; Bellotti M; Jezernik S; Curt A
    Biol Cybern; 2005 Sep; 93(3):153-70. PubMed ID: 16133587
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cholinergic mechanisms in spinal locomotion-potential target for rehabilitation approaches.
    Jordan LM; McVagh JR; Noga BR; Cabaj AM; Majczyński H; Sławińska U; Provencher J; Leblond H; Rossignol S
    Front Neural Circuits; 2014; 8():132. PubMed ID: 25414645
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Neurochemical excitation of propriospinal neurons facilitates locomotor command signal transmission in the lesioned spinal cord.
    Zaporozhets E; Cowley KC; Schmidt BJ
    J Neurophysiol; 2011 Jun; 105(6):2818-29. PubMed ID: 21451056
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recovery of locomotion following transplantation of monoaminergic neurons in the spinal cord of paraplegic rats.
    Gimenez y Ribotta M; Orsal D; Feraboli-Lohnherr D; Privat A
    Ann N Y Acad Sci; 1998 Nov; 860():393-411. PubMed ID: 9928327
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Can experiments in nonhuman primates expedite the translation of treatments for spinal cord injury in humans?
    Courtine G; Bunge MB; Fawcett JW; Grossman RG; Kaas JH; Lemon R; Maier I; Martin J; Nudo RJ; Ramon-Cueto A; Rouiller EM; Schnell L; Wannier T; Schwab ME; Edgerton VR
    Nat Med; 2007 May; 13(5):561-6. PubMed ID: 17479102
    [No Abstract]   [Full Text] [Related]  

  • 30. Locomotor recovery in chronic spinal rat: long-term pharmacological treatment or transplantation of embryonic neurons?
    Orsal D; Barthe JY; Antri M; Feraboli-Lohnherr D; Yakovleff A; Giménez y Ribotta M; Privat A; Provencher J; Rossignol S
    Prog Brain Res; 2002; 137():213-30. PubMed ID: 12440370
    [No Abstract]   [Full Text] [Related]  

  • 31. Modulation of spinal neuronal excitability by spinal direct currents and locomotion after spinal cord injury.
    Hubli M; Dietz V; Schrafl-Altermatt M; Bolliger M
    Clin Neurophysiol; 2013 Jun; 124(6):1187-95. PubMed ID: 23415451
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pattern generators and cortical maps in locomotion of spinal injured rats.
    Giszter S; Graziani V; Kargo W; Hockensmith G; Davies MR; Smeraski CS; Murray M
    Ann N Y Acad Sci; 1998 Nov; 860():554-5. PubMed ID: 9928361
    [No Abstract]   [Full Text] [Related]  

  • 33. Spontaneous recovery of locomotion induced by remaining fibers after spinal cord transection in adult rats.
    You SW; Chen BY; Liu HL; Lang B; Xia JL; Jiao XY; Ju G
    Restor Neurol Neurosci; 2003; 21(1-2):39-45. PubMed ID: 12808201
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Spark of Life: Engaging the Cortico-Truncoreticulo-Propriospinal Pathway by Electrical Stimulation.
    Canavero S; Ren XP
    CNS Neurosci Ther; 2016 Apr; 22(4):260-1. PubMed ID: 26888177
    [No Abstract]   [Full Text] [Related]  

  • 35. Human neuronal control of automatic functional movements: interaction between central programs and afferent input.
    Dietz V
    Physiol Rev; 1992 Jan; 72(1):33-69. PubMed ID: 1731372
    [No Abstract]   [Full Text] [Related]  

  • 36. Non-invasive tools to promote spinal plasticity in humans.
    Lamy JC; Boakye M
    Clin Neurophysiol; 2011 Nov; 122(11):2114-5. PubMed ID: 21514881
    [No Abstract]   [Full Text] [Related]  

  • 37. Rapid spinal mechanisms of motor coordination.
    Nichols TR; Cope TC; Abelew TA
    Exerc Sport Sci Rev; 1999; 27():255-84. PubMed ID: 10791019
    [No Abstract]   [Full Text] [Related]  

  • 38. [Mechanisms of suprasegmental correction of the work of generators of cyclic motor reactions].
    Degtiarenko AM
    Neirofiziologiia; 1992; 24(6):736-55. PubMed ID: 1494384
    [No Abstract]   [Full Text] [Related]  

  • 39. Transplants and neurotrophic factors increase regeneration and recovery of function after spinal cord injury.
    Bregman BS; Coumans JV; Dai HN; Kuhn PL; Lynskey J; McAtee M; Sandhu F
    Prog Brain Res; 2002; 137():257-73. PubMed ID: 12440372
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spinal and supraspinal plasticity after incomplete spinal cord injury: correlations between functional magnetic resonance imaging and engaged locomotor networks.
    Dobkin BH
    Prog Brain Res; 2000; 128():99-111. PubMed ID: 11105672
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.