BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 12440539)

  • 1. Eliminating background noise effect in micro-resolution particle image velocimetry.
    Tian JD; Qiu HH
    Appl Opt; 2002 Nov; 41(32):6849-57. PubMed ID: 12440539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiphase bubbly flow visualization using particle image velocimetry.
    Hassan YA
    Ann N Y Acad Sci; 2002 Oct; 972():223-8. PubMed ID: 12496021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional measurement and visualization of internal flow of a moving droplet using confocal micro-PIV.
    Kinoshita H; Kaneda S; Fujii T; Oshima M
    Lab Chip; 2007 Mar; 7(3):338-46. PubMed ID: 17330165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-Resolved Particle Image Velocimetry Measurements with Wall Shear Stress and Uncertainty Quantification for the FDA Nozzle Model.
    Raben JS; Hariharan P; Robinson R; Malinauskas R; Vlachos PP
    Cardiovasc Eng Technol; 2016 Mar; 7(1):7-22. PubMed ID: 26628081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Review of Planar PIV Systems and Image Processing Tools for Lab-On-Chip Microfluidics.
    Ergin FG; Watz BB; Gade-Nielsen NF
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30217102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase-conjugate holographic system for high-resolution particle-image velocimetry.
    Barnhart DH; Adrian RJ; Papen GC
    Appl Opt; 1994 Oct; 33(30):7159-70. PubMed ID: 20941270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system.
    Lima R; Wada S; Tanaka S; Takeda M; Ishikawa T; Tsubota K; Imai Y; Yamaguchi T
    Biomed Microdevices; 2008 Apr; 10(2):153-67. PubMed ID: 17885805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blood Flow Velocimetry in a Microchannel During Coagulation Using Particle Image Velocimetry and Wavelet-Based Optical Flow Velocimetry.
    Kucukal E; Man Y; Gurkan UA; Schmidt BE
    J Biomech Eng; 2021 Sep; 143(9):. PubMed ID: 33764427
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Echocardiographic particle image velocimetry: a novel technique for quantification of left ventricular blood vorticity pattern.
    Kheradvar A; Houle H; Pedrizzetti G; Tonti G; Belcik T; Ashraf M; Lindner JR; Gharib M; Sahn D
    J Am Soc Echocardiogr; 2010 Jan; 23(1):86-94. PubMed ID: 19836203
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental Techniques for Bubble Dynamics Analysis in Microchannels: A Review.
    Mohammadi M; Sharp KV
    J Fluids Eng; 2013 Feb; 135(2):212021-2120210. PubMed ID: 23917622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Backscatter particle image velocimetry via optical time-of-flight sectioning.
    Paciaroni ME; Chen Y; Lynch KP; Guildenbecher DR
    Opt Lett; 2018 Jan; 43(2):312-315. PubMed ID: 29328268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of Wall Shear Stress Exerted by Flowing Blood in the Human Carotid Artery: Ultrasound Doppler Velocimetry and Echo Particle Image Velocimetry.
    Gates PE; Gurung A; Mazzaro L; Aizawa K; Elyas S; Strain WD; Shore AC; Shandas R
    Ultrasound Med Biol; 2018 Jul; 44(7):1392-1401. PubMed ID: 29678322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contrast-enhancement techniques for particle-image velocimetry.
    Dellenback PA; Macharivilakathu J; Pierce SR
    Appl Opt; 2000 Nov; 39(32):5978-90. PubMed ID: 18354603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wall shear-rate estimation within the 50cc Penn State artificial heart using particle image velocimetry.
    Hochareon P; Manning KB; Fontaine AA; Tarbell JM; Deutsch S
    J Biomech Eng; 2004 Aug; 126(4):430-7. PubMed ID: 15543860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Novel Plasma-Based Fluid for Particle Image Velocimetry (PIV): In-Vitro Feasibility Study of Flow Diverter Effects in Aneurysm Model.
    Clauser J; Knieps MS; Büsen M; Ding A; Schmitz-Rode T; Steinseifer U; Arens J; Cattaneo G
    Ann Biomed Eng; 2018 Jun; 46(6):841-848. PubMed ID: 29488139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescent particle image velocimetry: application to flow measurement in refractive index-matched porous media.
    Northrup MA; Kulp TJ; Angel SM
    Appl Opt; 1991 Jul; 30(21):3034-40. PubMed ID: 20706352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Optical Turbulence and Density Gradients on Particle Image Velocimetry.
    Matt S; Nootz G; Hellman S; Hou W
    Sci Rep; 2020 Feb; 10(1):2130. PubMed ID: 32034169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated and temperature-controlled micro-PIV measurements enabling long-term-stable microchannel acoustophoresis characterization.
    Augustsson P; Barnkob R; Wereley ST; Bruus H; Laurell T
    Lab Chip; 2011 Dec; 11(24):4152-64. PubMed ID: 21989571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro confocal micro-PIV measurements of blood flow in a square microchannel: the effect of the haematocrit on instantaneous velocity profiles.
    Lima R; Wada S; Takeda M; Tsubota K; Yamaguchi T
    J Biomech; 2007; 40(12):2752-7. PubMed ID: 17399723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visualizing the transient electroosmotic flow and measuring the zeta potential of microchannels with a micro-PIV technique.
    Yan D; Nguyen NT; Yang C; Huang X
    J Chem Phys; 2006 Jan; 124(2):021103. PubMed ID: 16422562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.