BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 12440706)

  • 1. Tryptophan-rich antimicrobial peptides: comparative properties and membrane interactions.
    Schibli DJ; Epand RF; Vogel HJ; Epand RM
    Biochem Cell Biol; 2002; 80(5):667-77. PubMed ID: 12440706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bilayer interactions of indolicidin, a small antimicrobial peptide rich in tryptophan, proline, and basic amino acids.
    Ladokhin AS; Selsted ME; White SH
    Biophys J; 1997 Feb; 72(2 Pt 1):794-805. PubMed ID: 9017204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of head group and curvature on binding of the antimicrobial peptide tritrpticin to lipid membranes.
    Bozelli JC; Sasahara ET; Pinto MR; Nakaie CR; Schreier S
    Chem Phys Lipids; 2012 May; 165(4):365-73. PubMed ID: 22209923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of the membrane association of two antimicrobial peptides, magainin 2 and indolicidin.
    Zhao H; Mattila JP; Holopainen JM; Kinnunen PK
    Biophys J; 2001 Nov; 81(5):2979-91. PubMed ID: 11606308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamics of the interactions of tryptophan-rich cathelicidin antimicrobial peptides with model and natural membranes.
    Andrushchenko VV; Aarabi MH; Nguyen LT; Prenner EJ; Vogel HJ
    Biochim Biophys Acta; 2008 Apr; 1778(4):1004-14. PubMed ID: 18222168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of the antimicrobial peptide tritrpticin bound to micelles: a distinct membrane-bound peptide fold.
    Schibli DJ; Hwang PM; Vogel HJ
    Biochemistry; 1999 Dec; 38(51):16749-55. PubMed ID: 10606506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antimicrobial properties and interaction of two Trp-substituted cationic antimicrobial peptides with a lipid bilayer.
    Bi X; Wang C; Dong W; Zhu W; Shang D
    J Antibiot (Tokyo); 2014 May; 67(5):361-8. PubMed ID: 24496141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane binding and permeation by indolicidin analogs studied by a biomimetic lipid/polydiacetylene vesicle assay.
    Halevy R; Rozek A; Kolusheva S; Hancock RE; Jelinek R
    Peptides; 2003 Nov; 24(11):1753-61. PubMed ID: 15019207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Archetypal tryptophan-rich antimicrobial peptides: properties and applications.
    Shagaghi N; Palombo EA; Clayton AH; Bhave M
    World J Microbiol Biotechnol; 2016 Feb; 32(2):31. PubMed ID: 26748808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The tendency of magainin to associate upon binding to phospholipid bilayers.
    Schümann M; Dathe M; Wieprecht T; Beyermann M; Bienert M
    Biochemistry; 1997 Apr; 36(14):4345-51. PubMed ID: 9100031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of charge and hydrophobicity in peptide-lipid interaction: a comparative study based on tryptophan fluorescence measurements combined with the use of aqueous and hydrophobic quenchers.
    De Kroon AI; Soekarjo MW; De Gier J; De Kruijff B
    Biochemistry; 1990 Sep; 29(36):8229-40. PubMed ID: 2252886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of the bovine antimicrobial peptide indolicidin bound to dodecylphosphocholine and sodium dodecyl sulfate micelles.
    Rozek A; Friedrich CL; Hancock RE
    Biochemistry; 2000 Dec; 39(51):15765-74. PubMed ID: 11123901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recombinant expression, antimicrobial activity and mechanism of action of tritrpticin analogs containing fluoro-tryptophan residues.
    Arias M; Hoffarth ER; Ishida H; Aramini JM; Vogel HJ
    Biochim Biophys Acta; 2016 May; 1858(5):1012-23. PubMed ID: 26724205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of perfectly symmetric Trp-rich peptides with potent and broad-spectrum antimicrobial activities.
    Yang ST; Shin SY; Hahm KS; Kim JI
    Int J Antimicrob Agents; 2006 Apr; 27(4):325-30. PubMed ID: 16563706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions of tryptophan-rich cathelicidin antimicrobial peptides with model membranes studied by differential scanning calorimetry.
    Andrushchenko VV; Vogel HJ; Prenner EJ
    Biochim Biophys Acta; 2007 Oct; 1768(10):2447-58. PubMed ID: 17597579
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tryptophan fluorescence study of the interaction of penetratin peptides with model membranes.
    Christiaens B; Symoens S; Verheyden S; Engelborghs Y; Joliot A; Prochiantz A; Vandekerckhove J; Rosseneu M; Vanloo B
    Eur J Biochem; 2002 Jun; 269(12):2918-26. PubMed ID: 12071955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of action of puroindoline derived tryptophan-rich antimicrobial peptides.
    Haney EF; Petersen AP; Lau CK; Jing W; Storey DG; Vogel HJ
    Biochim Biophys Acta; 2013 Aug; 1828(8):1802-13. PubMed ID: 23562406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipid interactions of acylated tryptophan-methylated lactoferricin peptides by solid-state NMR.
    Greathouse D; Vostrikov V; McClellan N; Chipollini J; Lay J; Liyanage R; Ladd T
    J Pept Sci; 2008 Oct; 14(10):1103-10. PubMed ID: 18523968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigating the cationic side chains of the antimicrobial peptide tritrpticin: hydrogen bonding properties govern its membrane-disruptive activities.
    Nguyen LT; de Boer L; Zaat SA; Vogel HJ
    Biochim Biophys Acta; 2011 Sep; 1808(9):2297-303. PubMed ID: 21641334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydroxy-tryptophan containing derivatives of tritrpticin: modification of antimicrobial activity and membrane interactions.
    Arias M; Jensen KV; Nguyen LT; Storey DG; Vogel HJ
    Biochim Biophys Acta; 2015 Jan; 1848(1 Pt B):277-88. PubMed ID: 25178967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.