These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 12440725)

  • 1. Detoxification of terpinolene by plant pathogenic fungus Botrytis cinerea.
    Farooq A; Choudhary MI; Atta-ur-Rahman ; Tahara S; Başer KH; Demirci F
    Z Naturforsch C J Biosci; 2002; 57(9-10):863-6. PubMed ID: 12440725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biotransformation of (-)-a-pinene by Botrytis cinerea.
    Farooq A; Tahara S; Choudhary MI; Atta-ur-Rahman ; Ahmed Z; Hüsnü CB; Demirci F
    Z Naturforsch C J Biosci; 2002; 57(3-4):303-6. PubMed ID: 12064731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biotransformation of two cytotoxic terpenes, alpha-santonin and sclareol by Botrytis cinerea.
    Farooq A; Tahara S
    Z Naturforsch C J Biosci; 2000; 55(9-10):713-7. PubMed ID: 11098821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antifungal activity and fungal metabolism of steroidal glycosides of Easter lily (Lilium longiflorum Thunb.) by the plant pathogenic fungus, Botrytis cinerea.
    Munafo JP; Gianfagna TJ
    J Agric Food Chem; 2011 Jun; 59(11):5945-54. PubMed ID: 21524113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detoxification of cruciferous phytoalexins in Botrytis cinerea: spontaneous dimerization of a camalexin metabolite.
    Pedras MS; Hossain S; Snitynsky RB
    Phytochemistry; 2011 Feb; 72(2-3):199-206. PubMed ID: 21176925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antifungal compounds induced in the dual culture with Phytolacca americana callus and Botrytis fabae.
    Kobayashi A; Hagihara K; Kajiyama S; Kanzaki H; Kawazu K
    Z Naturforsch C J Biosci; 1995; 50(5-6):398-402. PubMed ID: 7546032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and biosynthetic studies on eremophilenols related to the phytoalexin capsidiol, produced by Botrytis cinerea.
    Suárez I; da Silva Lima G; Conti R; Pinedo C; Moraga J; Barúa J; de Oliveira ALL; Aleu J; Durán-Patrón R; Macías-Sánchez AJ; Hanson JR; Tallarico Pupo M; Hernández-Galán R; Collado IG
    Phytochemistry; 2018 Oct; 154():10-18. PubMed ID: 29929021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antifungal modes of action of tea tree oil and its two characteristic components against Botrytis cinerea.
    Yu D; Wang J; Shao X; Xu F; Wang H
    J Appl Microbiol; 2015 Nov; 119(5):1253-62. PubMed ID: 26294100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of drimenol and synthetic derivatives on growth and germination of Botrytis cinerea: Evaluation of possible mechanism of action.
    Robles-Kelly C; Rubio J; Thomas M; Sedán C; Martinez R; Olea AF; Carrasco H; Taborga L; Silva-Moreno E
    Pestic Biochem Physiol; 2017 Sep; 141():50-56. PubMed ID: 28911740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidative metabolism of ambrox and sclareolide by Botrytis cinerea.
    Farooq A; Tahara S
    Z Naturforsch C J Biosci; 2000; 55(5-6):341-6. PubMed ID: 10928544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The hydroxyanilide fenhexamid, a new sterol biosynthesis inhibitor fungicide efficient against the plant pathogenic fungus Botryotinia fuckeliana (Botrytis cinerea).
    Debieu D; Bach J; Hugon M; Malosse C; Leroux P
    Pest Manag Sci; 2001 Nov; 57(11):1060-7. PubMed ID: 11721524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolism of Antifungal Thiochroman-4-ones by Trichoderma viride and Botrytis cinerea.
    Pinedo-Rivilla C; Collado IG; Aleu J
    J Nat Prod; 2018 Apr; 81(4):1036-1040. PubMed ID: 29608070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The microbial oxidation of (-)-beta-pinene by Botrytis cinerea.
    Farooq A; Choudhary MI; Tahara S; Rahman AU; Başer KH; Demirci F
    Z Naturforsch C J Biosci; 2002; 57(7-8):686-90. PubMed ID: 12240997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antifungal activity and biotransformation of diisophorone by Botrytis cinerea.
    Daoubi M; Deligeorgopoulou A; Macías-Sánchez AJ; Hernández-Galán R; Hitchcock PB; Hanson JR; Collado IG
    J Agric Food Chem; 2005 Jul; 53(15):6035-9. PubMed ID: 16028992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel aspinolide production by Trichoderma arundinaceum with a potential role in Botrytis cinerea antagonistic activity and plant defence priming.
    Malmierca MG; Barua J; McCormick SP; Izquierdo-Bueno I; Cardoza RE; Alexander NJ; Hermosa R; Collado IG; Monte E; Gutiérrez S
    Environ Microbiol; 2015 Apr; 17(4):1103-18. PubMed ID: 24889745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 2-epi-botcinin A and 3-O-acetylbotcineric acid from Botrytis cinerea.
    Sakuno E; Tani H; Nakajima H
    Biosci Biotechnol Biochem; 2007 Oct; 71(10):2592-5. PubMed ID: 17928694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cys
    Wang Y; Zhou J; Zhong J; Luo D; Li Z; Yang J; Shu D; Tan H
    Appl Environ Microbiol; 2018 Sep; 84(17):. PubMed ID: 29959241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fungal terpene metabolites: biosynthetic relationships and the control of the phytopathogenic fungus Botrytis cinerea.
    Collado IG; Sánchez AJ; Hanson JR
    Nat Prod Rep; 2007 Aug; 24(4):674-86. PubMed ID: 17653354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactive oxygen species generated in chloroplasts contribute to tobacco leaf infection by the necrotrophic fungus Botrytis cinerea.
    Rossi FR; Krapp AR; Bisaro F; Maiale SJ; Pieckenstain FL; Carrillo N
    Plant J; 2017 Dec; 92(5):761-773. PubMed ID: 28906064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antifungal activity of valinomycin, a peptide antibiotic produced by Streptomyces sp. Strain M10 antagonistic to Botrytis cinerea.
    Park CN; Lee JM; Lee D; Kim BS
    J Microbiol Biotechnol; 2008 May; 18(5):880-4. PubMed ID: 18633285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.