These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 12440896)

  • 1. Two-dimensional water and ice layers: neutron diffraction studies at 278, 263, and 20 k.
    Janiak C; Scharmann TG; Mason SA
    J Am Chem Soc; 2002 Nov; 124(47):14010-1. PubMed ID: 12440896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calorimetric and neutron diffraction studies on transitions of water confined in nanoporous copper rubeanate.
    Yamada T; Yonamine R; Yamada T; Kitagawa H; Yamamuro O
    J Phys Chem B; 2010 Jul; 114(25):8405-9. PubMed ID: 20521805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Freezing, melting and structure of ice in a hydrophilic nanopore.
    Moore EB; de la Llave E; Welke K; Scherlis DA; Molinero V
    Phys Chem Chem Phys; 2010 Apr; 12(16):4124-34. PubMed ID: 20379503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental evidence for a liquid-liquid crossover in deeply cooled confined water.
    Cupane A; Fomina M; Piazza I; Peters J; SchirĂ² G
    Phys Rev Lett; 2014 Nov; 113(21):215701. PubMed ID: 25479506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-Dimensional Confined Ice Has the Electronic Signature of Liquid Water.
    Yun Y; Khaliullin RZ; Jung Y
    J Phys Chem Lett; 2019 Apr; 10(8):2008-2016. PubMed ID: 30946585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low temperature phase properties of water confined in mesoporous silica MCM-41: thermodynamic and neutron scattering study.
    Kittaka S; Takahara S; Matsumoto H; Wada Y; Satoh TJ; Yamaguchi T
    J Chem Phys; 2013 May; 138(20):204714. PubMed ID: 23742507
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Liquid-like water confined in stacks of biological membranes at 200 k and its relation to protein dynamics.
    Weik M; Lehnert U; Zaccai G
    Biophys J; 2005 Nov; 89(5):3639-46. PubMed ID: 16055529
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stability of two-dimensional tessellation ice on the hydroxylated beta-cristobalite (100) surface.
    Lu ZY; Sun ZY; Li ZS; An LJ
    J Phys Chem B; 2005 Mar; 109(12):5678-83. PubMed ID: 16851613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly confined water: two-dimensional ice, amorphous ice, and clathrate hydrates.
    Zhao WH; Wang L; Bai J; Yuan LF; Yang J; Zeng XC
    Acc Chem Res; 2014 Aug; 47(8):2505-13. PubMed ID: 25088018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrofreezing of confined water.
    Zangi R; Mark AE
    J Chem Phys; 2004 Apr; 120(15):7123-30. PubMed ID: 15267616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal and molecular structures of related nickel(II) complexes of open-chain and macrocyclic oxamide-based ligands and the peculiarities of water aggregates in their crystal lattices.
    Gavrish SP; Lampeka YD; Lightfoot P; Pritzkow H
    Dalton Trans; 2007 Nov; (41):4708-14. PubMed ID: 17940653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High cubicity of D
    Dutta D; Bera AK; Maheshwari P; Kolay S; Yusuf SM; Pujari PK
    Phys Chem Chem Phys; 2022 May; 24(19):11872-11881. PubMed ID: 35510632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual spectrum neutron radiography: identification of phase transitions between frozen and liquid water.
    Biesdorf J; Oberholzer P; Bernauer F; Kaestner A; Vontobel P; Lehmann EH; Schmidt TJ; Boillat P
    Phys Rev Lett; 2014 Jun; 112(24):248301. PubMed ID: 24996112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neutron diffraction of ice in hydrogels.
    Sekine Y; Ikeda-Fukazawa T; Aizawa M; Kobayashi R; Chi S; Fernandez-Baca JA; Yamauchi H; Fukazawa H
    J Phys Chem B; 2014 Nov; 118(47):13453-7. PubMed ID: 25157644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plastic ice in confined geometry: the evidence from neutron diffraction and NMR relaxation.
    Webber JB; Dore JC; Strange JH; Anderson R; Tohidi B
    J Phys Condens Matter; 2007 Oct; 19(41):415117. PubMed ID: 28192329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies of cavitation and ice nucleation in 'doubly-metastable' water: time-lapse photography and neutron diffraction.
    Barrow MS; Williams PR; Chan HH; Dore JC; Bellissent-Funel MC
    Phys Chem Chem Phys; 2012 Oct; 14(38):13255-61. PubMed ID: 22918522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water adsorption on Rh(111) at 20 K: from monomer to bulk amorphous ice.
    Yamamoto S; Beniya A; Mukai K; Yamashita Y; Yoshinobu J
    J Phys Chem B; 2005 Mar; 109(12):5816-23. PubMed ID: 16851634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystallization, melting, and structure of water nanoparticles at atmospherically relevant temperatures.
    Johnston JC; Molinero V
    J Am Chem Soc; 2012 Apr; 134(15):6650-9. PubMed ID: 22452637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A calorimetric study on the low temperature dynamics of doped ice V and its reversible phase transition to hydrogen ordered ice XIII.
    Salzmann CG; Radaelli PG; Finney JL; Mayer E
    Phys Chem Chem Phys; 2008 Nov; 10(41):6313-24. PubMed ID: 18936855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amorphous solid water produced by cryosectioning of crystalline ice at 113 K.
    AL-Amoudi A; Dubochet J; Studer D
    J Microsc; 2002 Aug; 207(Pt 2):146-53. PubMed ID: 12180960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.