These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 12440906)
1. Investigation of the neighboring residue effects on protein chemical shifts. Wang Y; Jardetzky O J Am Chem Soc; 2002 Nov; 124(47):14075-84. PubMed ID: 12440906 [TBL] [Abstract][Full Text] [Related]
2. Nearest-neighbor effects on backbone alpha and beta carbon chemical shifts in proteins. Wang L; Eghbalnia HR; Markley JL J Biomol NMR; 2007 Nov; 39(3):247-57. PubMed ID: 17899393 [TBL] [Abstract][Full Text] [Related]
3. Secondary structural effects on protein NMR chemical shifts. Wang Y J Biomol NMR; 2004 Nov; 30(3):233-44. PubMed ID: 15754052 [TBL] [Abstract][Full Text] [Related]
4. Sequence-dependent correction of random coil NMR chemical shifts. Schwarzinger S; Kroon GJ; Foss TR; Chung J; Wright PE; Dyson HJ J Am Chem Soc; 2001 Apr; 123(13):2970-8. PubMed ID: 11457007 [TBL] [Abstract][Full Text] [Related]
5. Toward direct determination of conformations of protein building units from multidimensional NMR experiments VI: chemical shift analysis of his to gain 3D structure and protonation state information. Hudáky P; Perczel A J Comput Chem; 2005 Oct; 26(13):1307-17. PubMed ID: 15999335 [TBL] [Abstract][Full Text] [Related]
6. Predicting 15N chemical shifts in proteins using the preceding residue-specific individual shielding surfaces from phi, psi i-1, and chi 1 torsion angles. Wang Y; Jardetzky O J Biomol NMR; 2004 Apr; 28(4):327-40. PubMed ID: 14872125 [TBL] [Abstract][Full Text] [Related]
7. Sequence correction of random coil chemical shifts: correlation between neighbor correction factors and changes in the Ramachandran distribution. Kjaergaard M; Poulsen FM J Biomol NMR; 2011 Jun; 50(2):157-65. PubMed ID: 21604143 [TBL] [Abstract][Full Text] [Related]
8. Position dependence of the 13C chemical shifts of alpha-helical model peptides. Fingerprint of the 20 naturally occurring amino acids. Vila JA; Baldoni HA; Scheraga HA Protein Sci; 2004 Nov; 13(11):2939-48. PubMed ID: 15498939 [TBL] [Abstract][Full Text] [Related]
9. Effects of side-chain orientation on the 13C chemical shifts of antiparallel beta-sheet model peptides. Villegas ME; Vila JA; Scheraga HA J Biomol NMR; 2007 Feb; 37(2):137-46. PubMed ID: 17180547 [TBL] [Abstract][Full Text] [Related]
10. Chemical shifts provide fold populations and register of beta hairpins and beta sheets. Fesinmeyer RM; Hudson FM; Olsen KA; White GW; Euser A; Andersen NH J Biomol NMR; 2005 Dec; 33(4):213-31. PubMed ID: 16341751 [TBL] [Abstract][Full Text] [Related]
11. Uncovering symmetry-breaking vector and reliability order for assigning secondary structures of proteins from atomic NMR chemical shifts in amino acids. Yu W; Lee W; Lee W; Kim S; Chang I J Biomol NMR; 2011 Dec; 51(4):411-24. PubMed ID: 22038647 [TBL] [Abstract][Full Text] [Related]
12. 1H, 13C and 15N random coil NMR chemical shifts of the common amino acids. I. Investigations of nearest-neighbor effects. Wishart DS; Bigam CG; Holm A; Hodges RS; Sykes BD J Biomol NMR; 1995 Jan; 5(1):67-81. PubMed ID: 7881273 [TBL] [Abstract][Full Text] [Related]
13. Carbon-13 NMR shielding in the twenty common amino acids: comparisons with experimental results in proteins. Sun H; Sanders LK; Oldfield E J Am Chem Soc; 2002 May; 124(19):5486-95. PubMed ID: 11996591 [TBL] [Abstract][Full Text] [Related]
14. Neighboring residue effects in terminally blocked dipeptides: implications for residual secondary structures in intrinsically unfolded/disordered proteins. Jung YS; Oh KI; Hwang GS; Cho M Chirality; 2014 Sep; 26(9):443-52. PubMed ID: 24453185 [TBL] [Abstract][Full Text] [Related]
15. Probing multiple effects on 15N, 13C alpha, 13C beta, and 13C' chemical shifts in peptides using density functional theory. Xu XP; Case DA Biopolymers; 2002 Dec; 65(6):408-23. PubMed ID: 12434429 [TBL] [Abstract][Full Text] [Related]
16. Local protein backbone folds determined by calculated NMR chemical shifts. Czajlik A; Hudáky I; Perczel A J Comput Chem; 2011 Dec; 32(16):3362-82. PubMed ID: 21905050 [TBL] [Abstract][Full Text] [Related]
17. The Nearest-Neighbor Effect on Random-Coil NMR Chemical Shifts Demonstrated Using a Low-Complexity Amino-Acid Sequence. Chen TC; Hsiao CL; Huang SJ; Huang JR Protein Pept Lett; 2016; 23(11):967-975. PubMed ID: 27653629 [TBL] [Abstract][Full Text] [Related]
18. Protein backbone chemical shifts predicted from searching a database for torsion angle and sequence homology. Shen Y; Bax A J Biomol NMR; 2007 Aug; 38(4):289-302. PubMed ID: 17610132 [TBL] [Abstract][Full Text] [Related]
19. C alpha and C beta carbon-13 chemical shifts in proteins from an empirical database. Iwadate M; Asakura T; Williamson MP J Biomol NMR; 1999 Mar; 13(3):199-211. PubMed ID: 10212983 [TBL] [Abstract][Full Text] [Related]
20. pH-dependent random coil (1)H, (13)C, and (15)N chemical shifts of the ionizable amino acids: a guide for protein pK a measurements. Platzer G; Okon M; McIntosh LP J Biomol NMR; 2014 Nov; 60(2-3):109-29. PubMed ID: 25239571 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]