BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 12441054)

  • 1. Depolarization redistributes synaptic membrane and creates a gradient of vesicles on the synaptic body at a ribbon synapse.
    Lenzi D; Crum J; Ellisman MH; Roberts WM
    Neuron; 2002 Nov; 36(4):649-59. PubMed ID: 12441054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Frequency selectivity of synaptic exocytosis in frog saccular hair cells.
    Rutherford MA; Roberts WM
    Proc Natl Acad Sci U S A; 2006 Feb; 103(8):2898-903. PubMed ID: 16473940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence that fast exocytosis can be predominantly mediated by vesicles not docked at active zones in frog saccular hair cells.
    Edmonds BW; Gregory FD; Schweizer FE
    J Physiol; 2004 Oct; 560(Pt 2):439-50. PubMed ID: 15308677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synaptic vesicle populations in saccular hair cells reconstructed by electron tomography.
    Lenzi D; Runyeon JW; Crum J; Ellisman MH; Roberts WM
    J Neurosci; 1999 Jan; 19(1):119-32. PubMed ID: 9870944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fine structure of the afferent synapse of the hair cells in the saccular macula of the goldfish, with special reference to the anastomosing tubules.
    Hama K; Saito K
    J Neurocytol; 1977 Aug; 6(4):361-73. PubMed ID: 894330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanomachinery Organizing Release at Neuronal and Ribbon Synapses.
    Chakrabarti R; Wichmann C
    Int J Mol Sci; 2019 Apr; 20(9):. PubMed ID: 31052288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of synaptic vesicle docking by different classes of macromolecules in active zone material.
    Szule JA; Harlow ML; Jung JH; De-Miguel FF; Marshall RM; McMahan UJ
    PLoS One; 2012; 7(3):e33333. PubMed ID: 22438915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction.
    Heuser JE; Reese TS
    J Cell Biol; 1973 May; 57(2):315-44. PubMed ID: 4348786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimizing synaptic architecture and efficiency for high-frequency transmission.
    Taschenberger H; Leão RM; Rowland KC; Spirou GA; von Gersdorff H
    Neuron; 2002 Dec; 36(6):1127-43. PubMed ID: 12495627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zinc blocks acetylcholine release but not vesicle fusion at the Torpedo nerve-electroplate junction.
    Parducz A; Corrèges P; Sors P; Dunant Y
    Eur J Neurosci; 1997 Apr; 9(4):732-8. PubMed ID: 9153579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Depletion of vesicles and fatigue of transmission at a vertebrate central synapse.
    Model PG; Highstein SM; Bennett MV
    Brain Res; 1975 Nov; 98(2):209-28. PubMed ID: 241460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Response of the taste receptor cell to the umami-substance stimulus. An electron-microscopic study.
    Yoshie S; Wakasugi C; Teraki Y; Kanazawa H; Iwanaga T; Fujita T
    Physiol Behav; 1991 May; 49(5):887-9. PubMed ID: 1653431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium-triggered exocytosis and endocytosis in an isolated presynaptic cell: capacitance measurements in saccular hair cells.
    Parsons TD; Lenzi D; Almers W; Roberts WM
    Neuron; 1994 Oct; 13(4):875-83. PubMed ID: 7946334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disappearance and reformation of synaptic vesicle membrane upon transmitter release observed under reversible blockage of membrane retrieval.
    Koenig JH; Ikeda K
    J Neurosci; 1989 Nov; 9(11):3844-60. PubMed ID: 2573698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast kinetics of exocytosis revealed by simultaneous measurements of presynaptic capacitance and postsynaptic currents at a central synapse.
    Sun JY; Wu LG
    Neuron; 2001 Apr; 30(1):171-82. PubMed ID: 11343653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The structural organization of the readily releasable pool of synaptic vesicles.
    Rizzoli SO; Betz WJ
    Science; 2004 Mar; 303(5666):2037-9. PubMed ID: 15044806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Individual synaptic vesicles mediate stimulated exocytosis from cochlear inner hair cells.
    Grabner CP; Moser T
    Proc Natl Acad Sci U S A; 2018 Dec; 115(50):12811-12816. PubMed ID: 30463957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Vesicle cycle in the presynaptic nerve terminal].
    Zefirov AL
    Ross Fiziol Zh Im I M Sechenova; 2007 May; 93(5):544-62. PubMed ID: 17650622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High mobility of vesicles supports continuous exocytosis at a ribbon synapse.
    Holt M; Cooke A; Neef A; Lagnado L
    Curr Biol; 2004 Feb; 14(3):173-83. PubMed ID: 14761649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reversible depletion of synaptic vesicles induced by application of high external potassium to the frog neuromuscular junction.
    Gennaro JF; Nastuk WL; Rutherford DT
    J Physiol; 1978 Jul; 280():237-47. PubMed ID: 308538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.