These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 12441377)

  • 21. Comprehensive analysis of the numbers, lengths and amino acid compositions of transmembrane helices in prokaryotic, eukaryotic and viral integral membrane proteins of high-resolution structure.
    Saidijam M; Azizpour S; Patching SG
    J Biomol Struct Dyn; 2018 Feb; 36(2):443-464. PubMed ID: 28150531
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transmembrane helix prediction: a comparative evaluation and analysis.
    Cuthbertson JM; Doyle DA; Sansom MS
    Protein Eng Des Sel; 2005 Jun; 18(6):295-308. PubMed ID: 15932905
    [TBL] [Abstract][Full Text] [Related]  

  • 23. TMSEG: Novel prediction of transmembrane helices.
    Bernhofer M; Kloppmann E; Reeb J; Rost B
    Proteins; 2016 Nov; 84(11):1706-1716. PubMed ID: 27566436
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hydrophobicity and prediction of the secondary structure of membrane proteins and peptides.
    Klevanik AV
    Membr Cell Biol; 2001 Jul; 14(5):673-97. PubMed ID: 11699870
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prediction of helix-helix contacts and interacting helices in polytopic membrane proteins using neural networks.
    Fuchs A; Kirschner A; Frishman D
    Proteins; 2009 Mar; 74(4):857-71. PubMed ID: 18704938
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Fundamental studies on membrane protein folding using model transmembrane helices].
    Yano Y
    Yakugaku Zasshi; 2005 Sep; 125(9):725-32. PubMed ID: 16141692
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Refining neural network predictions for helical transmembrane proteins by dynamic programming.
    Rost B; Casadio R; Fariselli P
    Proc Int Conf Intell Syst Mol Biol; 1996; 4():192-200. PubMed ID: 8877519
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hydrophobic pulses predict transmembrane helix irregularities and channel transmembrane units.
    Paulet D; Claustres M; BĂ©roud C
    BMC Bioinformatics; 2011 May; 12():135. PubMed ID: 21545751
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A method for structural analysis of alpha-helices of membrane proteins.
    Mohapatra PK; Khamari A; Raval MK
    J Mol Model; 2004 Dec; 10(5-6):393-8. PubMed ID: 15597208
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Helix perturbations in membrane proteins assist in inter-helical interactions and optimal helix positioning in the bilayer.
    Shelar A; Bansal M
    Biochim Biophys Acta; 2016 Nov; 1858(11):2804-2817. PubMed ID: 27521749
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A benchmark server using high resolution protein structure data, and benchmark results for membrane helix predictions.
    Rath EM; Tessier D; Campbell AA; Lee HC; Werner T; Salam NK; Lee LK; Church WB
    BMC Bioinformatics; 2013 Mar; 14():111. PubMed ID: 23530628
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Predicting the topology of transmembrane helical proteins using mean burial propensity and a hidden-Markov-model-based method.
    Zhou H; Zhou Y
    Protein Sci; 2003 Jul; 12(7):1547-55. PubMed ID: 12824500
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Static benchmarking of membrane helix predictions.
    Kernytsky A; Rost B
    Nucleic Acids Res; 2003 Jul; 31(13):3642-4. PubMed ID: 12824384
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transmembrane helix prediction using amino acid property features and latent semantic analysis.
    Ganapathiraju M; Balakrishnan N; Reddy R; Klein-Seetharaman J
    BMC Bioinformatics; 2008; 9 Suppl 1(Suppl 1):S4. PubMed ID: 18315857
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biological insertion of computationally designed short transmembrane segments.
    Baeza-Delgado C; von Heijne G; Marti-Renom MA; Mingarro I
    Sci Rep; 2016 Mar; 6():23397. PubMed ID: 26987712
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sequence context and modified hydrophobic moment plots help identify 'horizontal' surface helices in transmembrane protein structure prediction.
    Orgel JP
    J Struct Biol; 2004 Oct; 148(1):51-65. PubMed ID: 15363787
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhanced membrane protein topology prediction using a hierarchical classification method and a new scoring function.
    Lo A; Chiu HS; Sung TY; Lyu PC; Hsu WL
    J Proteome Res; 2008 Feb; 7(2):487-96. PubMed ID: 18081245
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Energetics, stability, and prediction of transmembrane helices.
    Jayasinghe S; Hristova K; White SH
    J Mol Biol; 2001 Oct; 312(5):927-34. PubMed ID: 11580239
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhanced recognition of protein transmembrane domains with prediction-based structural profiles.
    Cao B; Porollo A; Adamczak R; Jarrell M; Meller J
    Bioinformatics; 2006 Feb; 22(3):303-9. PubMed ID: 16293670
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Why is the biological hydrophobicity scale more accurate than earlier experimental hydrophobicity scales?
    Peters C; Elofsson A
    Proteins; 2014 Sep; 82(9):2190-8. PubMed ID: 24753217
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.