These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 12441379)

  • 1. Thoroughly sampling sequence space: large-scale protein design of structural ensembles.
    Larson SM; England JL; Desjarlais JR; Pande VS
    Protein Sci; 2002 Dec; 11(12):2804-13. PubMed ID: 12441379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accurate prediction for atomic-level protein design and its application in diversifying the near-optimal sequence space.
    Fromer M; Yanover C
    Proteins; 2009 May; 75(3):682-705. PubMed ID: 19003998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational protein design: validation and possible relevance as a tool for homology searching and fold recognition.
    Schmidt Am Busch M; Sedano A; Simonson T
    PLoS One; 2010 May; 5(5):e10410. PubMed ID: 20463972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Filling-in void and sparse regions in protein sequence space by protein-like artificial sequences enables remarkable enhancement in remote homology detection capability.
    Mudgal R; Sowdhamini R; Chandra N; Srinivasan N; Sandhya S
    J Mol Biol; 2014 Feb; 426(4):962-79. PubMed ID: 24316367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Folding free energy function selects native-like protein sequences in the core but not on the surface.
    Jaramillo A; Wernisch L; Héry S; Wodak SJ
    Proc Natl Acad Sci U S A; 2002 Oct; 99(21):13554-9. PubMed ID: 12368470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Size and structure of the sequence space of repeat proteins.
    Marchi J; Galpern EA; Espada R; Ferreiro DU; Walczak AM; Mora T
    PLoS Comput Biol; 2019 Aug; 15(8):e1007282. PubMed ID: 31415557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased detection of structural templates using alignments of designed sequences.
    Larson SM; Garg A; Desjarlais JR; Pande VS
    Proteins; 2003 May; 51(3):390-6. PubMed ID: 12696050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterizing the existing and potential structural space of proteins by large-scale multiple loop permutations.
    Dai L; Zhou Y
    J Mol Biol; 2011 May; 408(3):585-95. PubMed ID: 21376059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct prediction of profiles of sequences compatible with a protein structure by neural networks with fragment-based local and energy-based nonlocal profiles.
    Li Z; Yang Y; Faraggi E; Zhan J; Zhou Y
    Proteins; 2014 Oct; 82(10):2565-73. PubMed ID: 24898915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein topology and stability define the space of allowed sequences.
    Koehl P; Levitt M
    Proc Natl Acad Sci U S A; 2002 Feb; 99(3):1280-5. PubMed ID: 11805293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimally informative backbone structural propensities in proteins.
    Solis AD; Rackovsky S
    Proteins; 2002 Aug; 48(3):463-86. PubMed ID: 12112672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combining Rosetta with molecular dynamics (MD): A benchmark of the MD-based ensemble protein design.
    Ludwiczak J; Jarmula A; Dunin-Horkawicz S
    J Struct Biol; 2018 Jul; 203(1):54-61. PubMed ID: 29454111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational protein design and large-scale assessment by I-TASSER structure assembly simulations.
    Bazzoli A; Tettamanzi AG; Zhang Y
    J Mol Biol; 2011 Apr; 407(5):764-76. PubMed ID: 21329699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational protein design quantifies structural constraints on amino acid covariation.
    Ollikainen N; Kortemme T
    PLoS Comput Biol; 2013; 9(11):e1003313. PubMed ID: 24244128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. De novo protein design. II. Plasticity in sequence space.
    Koehl P; Levitt M
    J Mol Biol; 1999 Nov; 293(5):1183-93. PubMed ID: 10547294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploration of the relationship between topology and designability of conformations.
    Leelananda SP; Towfic F; Jernigan RL; Kloczkowski A
    J Chem Phys; 2011 Jun; 134(23):235101. PubMed ID: 21702580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The intrinsic dimension of protein sequence evolution.
    Facco E; Pagnani A; Russo ET; Laio A
    PLoS Comput Biol; 2019 Apr; 15(4):e1006767. PubMed ID: 30958823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systematic analysis of short internal indels and their impact on protein folding.
    Kim R; Guo JT
    BMC Struct Biol; 2010 Aug; 10():24. PubMed ID: 20684774
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multistate Computational Protein Design with Backbone Ensembles.
    Davey JA; Chica RA
    Methods Mol Biol; 2017; 1529():161-179. PubMed ID: 27914050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Dynameomics Entropy Dictionary: A Large-Scale Assessment of Conformational Entropy across Protein Fold Space.
    Towse CL; Akke M; Daggett V
    J Phys Chem B; 2017 Apr; 121(16):3933-3945. PubMed ID: 28375008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.