These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 12441385)

  • 21. In silico local structure approach: a case study on outer membrane proteins.
    Martin J; de Brevern AG; Camproux AC
    Proteins; 2008 Apr; 71(1):92-109. PubMed ID: 17932925
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 'Protein Peeling': an approach for splitting a 3D protein structure into compact fragments.
    Gelly JC; de Brevern AG; Hazout S
    Bioinformatics; 2006 Jan; 22(2):129-33. PubMed ID: 16301202
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Methods for optimizing the structure alphabet sequences of proteins.
    Dong QW; Wang XL; Lin L
    Comput Biol Med; 2007 Nov; 37(11):1610-6. PubMed ID: 17493604
    [TBL] [Abstract][Full Text] [Related]  

  • 24. SMS: sequence, motif and structure--a database on the structural rigidity of peptide fragments in non-redundant proteins.
    Balamurugan B; Roshan MN; Michael D; Ambaree M; Divya S; Keerthana H; Seemanthini M; Sekar K
    In Silico Biol; 2006; 6(3):229-35. PubMed ID: 16922686
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Detecting protein candidate fragments using a structural alphabet profile comparison approach.
    Shen Y; Picord G; Guyon F; Tuffery P
    PLoS One; 2013; 8(11):e80493. PubMed ID: 24303019
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Protein short loop prediction in terms of a structural alphabet.
    Tyagi M; Bornot A; Offmann B; de Brevern AG
    Comput Biol Chem; 2009 Aug; 33(4):329-33. PubMed ID: 19625218
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of catalytic residues from protein structure using support vector machine with sequence and structural features.
    Pugalenthi G; Kumar KK; Suganthan PN; Gangal R
    Biochem Biophys Res Commun; 2008 Mar; 367(3):630-4. PubMed ID: 18206645
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Efficient methods for filtering and ranking fragments for the prediction of structurally variable regions in proteins.
    Heuser P; Wohlfahrt G; Schomburg D
    Proteins; 2004 Feb; 54(3):583-95. PubMed ID: 14748005
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recognition of remotely related structural homologues using sequence profiles of aligned homologous protein structures.
    Namboori S; Srinivasan N; Pandit SB
    In Silico Biol; 2004; 4(4):445-60. PubMed ID: 15506994
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optimized representations and maximal information in proteins.
    Solis AD; Rackovsky S
    Proteins; 2000 Feb; 38(2):149-64. PubMed ID: 10656262
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced protein fold recognition using a structural alphabet.
    Deschavanne P; Tufféry P
    Proteins; 2009 Jul; 76(1):129-37. PubMed ID: 19089985
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Computer-aided NMR assay for detecting natively folded structural domains.
    Hondoh T; Kato A; Yokoyama S; Kuroda Y
    Protein Sci; 2006 Apr; 15(4):871-83. PubMed ID: 16522794
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The fragment transformation method to detect the protein structural motifs.
    Lu CH; Lin YS; Chen YC; Yu CS; Chang SY; Hwang JK
    Proteins; 2006 May; 63(3):636-43. PubMed ID: 16470805
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Socket: a program for identifying and analysing coiled-coil motifs within protein structures.
    Walshaw J; Woolfson DN
    J Mol Biol; 2001 Apr; 307(5):1427-50. PubMed ID: 11292353
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural relatedness via flow networks in protein sequence space.
    Frenkel ZM; Frenkel ZM; Trifonov EN; Snir S
    J Theor Biol; 2009 Oct; 260(3):438-44. PubMed ID: 19591846
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optimally informative backbone structural propensities in proteins.
    Solis AD; Rackovsky S
    Proteins; 2002 Aug; 48(3):463-86. PubMed ID: 12112672
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Taking advantage of local structure descriptors to analyze interresidue contacts in protein structures and protein complexes.
    Martin J; Regad L; Etchebest C; Camproux AC
    Proteins; 2008 Nov; 73(3):672-89. PubMed ID: 18491388
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prediction of the protein folding core: application to the immunoglobulin fold.
    Prudhomme N; Chomilier J
    Biochimie; 2009; 91(11-12):1465-74. PubMed ID: 19665046
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Using increment of diversity to predict mitochondrial proteins of malaria parasite: integrating pseudo-amino acid composition and structural alphabet.
    Chen YL; Li QZ; Zhang LQ
    Amino Acids; 2012 Apr; 42(4):1309-16. PubMed ID: 21191803
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Species specific amino acid sequence-protein local structure relationships: An analysis in the light of a structural alphabet.
    de Brevern AG; Joseph AP
    J Theor Biol; 2011 May; 276(1):209-17. PubMed ID: 21333657
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.