These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 12441581)

  • 1. Energy cost during locomotion across snow: a comparison of four types of snowshoes with snowshoe design considerations.
    Knapik JJ; Hickey C; Ortega S; de Pontbriand R
    Work; 2002; 18(2):171-7. PubMed ID: 12441581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy cost and physiological responses of males snowshoeing with rotating and fixed toe-cord designs in powdered snow conditions.
    Dalleck LC; DeVoe DE; Kravitz L
    Ergonomics; 2003 Jul; 46(9):875-81. PubMed ID: 12775486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The energy expenditure of snowshoeing in packed vs. unpacked snow at low-level walking speeds.
    Connolly DA
    J Strength Cond Res; 2002 Nov; 16(4):606-10. PubMed ID: 12423193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A proposed model for load carriage on sloped terrain.
    Santee WR; Allison WF; Blanchard LA; Small MG
    Aviat Space Environ Med; 2001 Jun; 72(6):562-6. PubMed ID: 11396562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanics of walking with snowshoes.
    Browning RC; Kurtz RN; Kerherve H
    Sports Biomech; 2012 Mar; 11(1):73-84. PubMed ID: 22518946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cardiorespiratory strain during walking in snow with boots of different weights.
    Smolander J; Louhevaara V; Hakola T; Ahonen E; Klen T
    Ergonomics; 1989 Jan; 32(1):3-13. PubMed ID: 2924759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reappraisal of the comparative cost of human locomotion using gait-specific allometric analyses.
    Rubenson J; Heliams DB; Maloney SK; Withers PC; Lloyd DG; Fournier PA
    J Exp Biol; 2007 Oct; 210(Pt 20):3513-24. PubMed ID: 17921153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heart rate profiles and energy cost of locomotion during cross-country skiing races.
    Mognoni P; Rossi G; Gastaldelli F; Canclini A; Cotelli F
    Eur J Appl Physiol; 2001 Jul; 85(1-2):62-7. PubMed ID: 11513322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Center of mass motion and the effects of ankle bracing on metabolic cost during submaximal walking trials.
    Herndon SK; Bennett BC; Wolovick A; Filachek A; Gaesser GA; Weltman A; Abel MF
    J Orthop Res; 2006 Dec; 24(12):2170-5. PubMed ID: 17019702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of lower limb length on the energetic cost of locomotion: implications for fossil hominins.
    Steudel-Numbers KL; Tilkens MJ
    J Hum Evol; 2004; 47(1-2):95-109. PubMed ID: 15288526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Jumping mechanisms and performance of snow fleas (Mecoptera, Boreidae).
    Burrows M
    J Exp Biol; 2011 Jul; 214(Pt 14):2362-74. PubMed ID: 21697428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy demands of walking in persons with postpoliomyelitis syndrome: relationship with muscle strength and reproducibility.
    Brehm MA; Nollet F; Harlaar J
    Arch Phys Med Rehabil; 2006 Jan; 87(1):136-40. PubMed ID: 16401452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energetics in Homo erectus and other early hominins: the consequences of increased lower-limb length.
    Steudel-Numbers KL
    J Hum Evol; 2006 Nov; 51(5):445-53. PubMed ID: 16780923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The energy cost of women walking and running in shoes and boots.
    Jones BH; Knapik JJ; Daniels WL; Toner MM
    Ergonomics; 1986 Mar; 29(3):439-43. PubMed ID: 3698971
    [No Abstract]   [Full Text] [Related]  

  • 15. Acceleration versus heart rate for estimating energy expenditure and speed during locomotion in animals: tests with an easy model species, Homo sapiens.
    Halsey LG; Shepard EL; Hulston CJ; Venables MC; White CR; Jeukendrup AE; Wilson RP
    Zoology (Jena); 2008; 111(3):231-41. PubMed ID: 18375107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy cost of backpacking in heavy boots.
    Legg SJ; Mahanty A
    Ergonomics; 1986 Mar; 29(3):433-8. PubMed ID: 3698970
    [No Abstract]   [Full Text] [Related]  

  • 17. The reliability and validity of the physiological cost index in healthy subjects while walking on 2 different tracks.
    Graham RC; Smith NM; White CM
    Arch Phys Med Rehabil; 2005 Oct; 86(10):2041-6. PubMed ID: 16213251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Walking on inclines: energetics of locomotion in the ant Camponotus.
    Lipp A; Wolf H; Lehmann FO
    J Exp Biol; 2005 Feb; 208(Pt 4):707-19. PubMed ID: 15695763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A collisional model of the energetic cost of support work qualitatively explains leg sequencing in walking and galloping, pseudo-elastic leg behavior in running and the walk-to-run transition.
    Ruina A; Bertram JE; Srinivasan M
    J Theor Biol; 2005 Nov; 237(2):170-92. PubMed ID: 15961114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Models and the scaling of energy costs for locomotion.
    Alexander RM
    J Exp Biol; 2005 May; 208(Pt 9):1645-52. PubMed ID: 15855396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.