These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 12443120)

  • 1. Nonlinear theory of the ablative Rayleigh-Taylor instability.
    Sanz J; Ramírez J; Ramis R; Betti R; Town RP
    Phys Rev Lett; 2002 Nov; 89(19):195002. PubMed ID: 12443120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bubble acceleration in the ablative Rayleigh-Taylor instability.
    Betti R; Sanz J
    Phys Rev Lett; 2006 Nov; 97(20):205002. PubMed ID: 17155687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonlinear excitation of the ablative Rayleigh-Taylor instability for all wave numbers.
    Zhang H; Betti R; Gopalaswamy V; Yan R; Aluie H
    Phys Rev E; 2018 Jan; 97(1-1):011203. PubMed ID: 29448450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ablation effects on weakly nonlinear Rayleigh-Taylor instability with a finite bandwidth.
    Ikegawa T; Nishihara K
    Phys Rev Lett; 2002 Sep; 89(11):115001. PubMed ID: 12225142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-Similar Multimode Bubble-Front Evolution of the Ablative Rayleigh-Taylor Instability in Two and Three Dimensions.
    Zhang H; Betti R; Yan R; Zhao D; Shvarts D; Aluie H
    Phys Rev Lett; 2018 Nov; 121(18):185002. PubMed ID: 30444419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Weakly nonlinear theory for the ablative Rayleigh-Taylor instability.
    Garnier J; Raviart PA; Cherfils-Clérouin C; Masse L
    Phys Rev Lett; 2003 May; 90(18):185003. PubMed ID: 12786013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dependence of turbulent Rayleigh-Taylor instability on initial perturbations.
    Dimonte G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 2):056305. PubMed ID: 15244930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-mode dynamics of the Rayleigh-Taylor instability at any density ratio.
    Ramaprabhu P; Dimonte G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2B):036314. PubMed ID: 15903581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Saturation and postsaturation phenomena of Rayleigh-Taylor instability with adjacent modes.
    Ikegawa T; Nishihara K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026404. PubMed ID: 12636819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for a bubble-competition regime in indirectly driven ablative Rayleigh-Taylor instability experiments on the NIF.
    Martinez DA; Smalyuk VA; Kane JO; Casner A; Liberatore S; Masse LP
    Phys Rev Lett; 2015 May; 114(21):215004. PubMed ID: 26066443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Observation of self-similarity in the magnetic fields generated by the ablative nonlinear Rayleigh-Taylor instability.
    Gao L; Nilson PM; Igumenschev IV; Fiksel G; Yan R; Davies JR; Martinez D; Smalyuk V; Haines MG; Blackman EG; Froula DH; Betti R; Meyerhofer DD
    Phys Rev Lett; 2013 May; 110(18):185003. PubMed ID: 23683208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Observation of the stabilizing effect of a laminated ablator on the ablative Rayleigh-Taylor instability.
    Masse L; Casner A; Galmiche D; Huser G; Liberatore S; Theobald M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 2):055401. PubMed ID: 21728598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Secondary instability of the spike-bubble structures induced by nonlinear Rayleigh-Taylor instability with a diffuse interface.
    Han L; Yuan J; Dong M; Fan Z
    Phys Rev E; 2021 Sep; 104(3-2):035108. PubMed ID: 34654080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stabilizing effect of anisotropic thermal diffusion on the ablative Rayleigh-Taylor instability.
    Masse L
    Phys Rev Lett; 2007 Jun; 98(24):245001. PubMed ID: 17677970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analytical model of nonlinear, single-mode, classical Rayleigh-Taylor instability at arbitrary Atwood numbers.
    Goncharov VN
    Phys Rev Lett; 2002 Apr; 88(13):134502. PubMed ID: 11955101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pure single-mode Rayleigh-Taylor instability for arbitrary Atwood numbers.
    Liu W; Wang X; Liu X; Yu C; Fang M; Ye W
    Sci Rep; 2020 Mar; 10(1):4201. PubMed ID: 32144289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Late-time quadratic growth in single-mode Rayleigh-Taylor instability.
    Wei T; Livescu D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 2):046405. PubMed ID: 23214698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of temporal density variation and convergent geometry on nonlinear bubble evolution in classical Rayleigh-Taylor instability.
    Goncharov VN; Li D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 2):046306. PubMed ID: 15903785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetized ablative Rayleigh-Taylor instability in three dimensions.
    Walsh CA
    Phys Rev E; 2022 Feb; 105(2-2):025206. PubMed ID: 35291065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution of the single-mode Rayleigh-Taylor instability under the influence of time-dependent accelerations.
    Ramaprabhu P; Karkhanis V; Banerjee R; Varshochi H; Khan M; Lawrie AG
    Phys Rev E; 2016 Jan; 93(1):013118. PubMed ID: 26871165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.