These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 12443140)

  • 1. Quantum Monte Carlo calculations of nanostructure optical gaps: application to silicon quantum dots.
    Williamson AJ; Grossman JC; Hood RQ; Puzder A; Galli G
    Phys Rev Lett; 2002 Nov; 89(19):196803. PubMed ID: 12443140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Benchmark Many-Body GW and Bethe-Salpeter Calculations for Small Transition Metal Molecules.
    Körbel S; Boulanger P; Duchemin I; Blase X; Marques MA; Botti S
    J Chem Theory Comput; 2014 Sep; 10(9):3934-43. PubMed ID: 26588537
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron emission from diamondoids: a diffusion quantum Monte Carlo study.
    Drummond ND; Williamson AJ; Needs RJ; Galli G
    Phys Rev Lett; 2005 Aug; 95(9):096801. PubMed ID: 16197235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of a Quantum Monte Carlo Protocol To Achieve High Accuracy and High-Throughput Materials Formation Energies.
    Saritas K; Mueller T; Wagner L; Grossman JC
    J Chem Theory Comput; 2017 May; 13(5):1943-1951. PubMed ID: 28358499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient quantum monte carlo energies for molecular dynamics simulations.
    Grossman JC; Mitas L
    Phys Rev Lett; 2005 Feb; 94(5):056403. PubMed ID: 15783668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A density functional and quantum Monte Carlo study of glutamic acid in vacuo and in a dielectric continuum medium.
    Floris FM; Filippi C; Amovilli C
    J Chem Phys; 2012 Aug; 137(7):075102. PubMed ID: 22920143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Minimum energy pathways via quantum Monte Carlo.
    Saccani S; Filippi C; Moroni S
    J Chem Phys; 2013 Feb; 138(8):084109. PubMed ID: 23464142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Band Gaps and Optical Spectra of Chlorographene, Fluorographene and Graphane from G0W0, GW0 and GW Calculations on Top of PBE and HSE06 Orbitals.
    Karlický F; Otyepka M
    J Chem Theory Comput; 2013 Sep; 9(9):4155-64. PubMed ID: 26592406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fundamental high-pressure calibration from all-electron quantum Monte Carlo calculations.
    Esler KP; Cohen RE; Militzer B; Kim J; Needs RJ; Towler MD
    Phys Rev Lett; 2010 May; 104(18):185702. PubMed ID: 20482190
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Benchmarking the Bethe-Salpeter Formalism on a Standard Organic Molecular Set.
    Jacquemin D; Duchemin I; Blase X
    J Chem Theory Comput; 2015 Jul; 11(7):3290-304. PubMed ID: 26207104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Auxiliary-field quantum Monte Carlo study of first- and second-row post-d elements.
    Al-Saidi WA; Krakauer H; Zhang S
    J Chem Phys; 2006 Oct; 125(15):154110. PubMed ID: 17059242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum Monte Carlo simulation of nanoscale MgH2 cluster thermodynamics.
    Wu Z; Allendorf MD; Grossman JC
    J Am Chem Soc; 2009 Oct; 131(39):13918-9. PubMed ID: 19739635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multideterminant Wave Functions in Quantum Monte Carlo.
    Morales MA; McMinis J; Clark BK; Kim J; Scuseria GE
    J Chem Theory Comput; 2012 Jul; 8(7):2181-8. PubMed ID: 26588949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Many-body Green's function GW and Bethe-Salpeter study of the optical excitations in a paradigmatic model dipeptide.
    Faber C; Boulanger P; Duchemin I; Attaccalite C; Blase X
    J Chem Phys; 2013 Nov; 139(19):194308. PubMed ID: 24320327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward accurate reaction energetics for molecular line growth at surface: Quantum Monte Carlo and density functional theory calculations.
    Kanai Y; Takeuchi N
    J Chem Phys; 2009 Dec; 131(21):214708. PubMed ID: 19968361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ab initio calculations of optical absorption spectra: solution of the Bethe-Salpeter equation within density matrix perturbation theory.
    Rocca D; Lu D; Galli G
    J Chem Phys; 2010 Oct; 133(16):164109. PubMed ID: 21033777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Bethe-Salpeter Equation Formalism: From Physics to Chemistry.
    Blase X; Duchemin I; Jacquemin D; Loos PF
    J Phys Chem Lett; 2020 Sep; 11(17):7371-7382. PubMed ID: 32787315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advances in correlated electronic structure methods for solids, surfaces, and nanostructures.
    Huang P; Carter EA
    Annu Rev Phys Chem; 2008; 59():261-90. PubMed ID: 18031211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Communication: energy benchmarking with quantum Monte Carlo for water nano-droplets and bulk liquid water.
    Alfè D; Bartók AP; Csányi G; Gillan MJ
    J Chem Phys; 2013 Jun; 138(22):221102. PubMed ID: 23781773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast and Accurate Electronic Excitations in Cyanines with the Many-Body Bethe-Salpeter Approach.
    Boulanger P; Jacquemin D; Duchemin I; Blase X
    J Chem Theory Comput; 2014 Mar; 10(3):1212-8. PubMed ID: 26580191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.