These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 1244322)

  • 21. The influence of carbon dioxide, bicarbonate and other buffers on the potential of antimony microelectrodes.
    Quehenberger P
    Pflugers Arch; 1977 Mar; 368(1-2):141-7. PubMed ID: 558586
    [TBL] [Abstract][Full Text] [Related]  

  • 22. General properties of antimony microelectrode in comparison with glass microelectrode for pH measurement.
    Fujimoto M; Matsumura Y; Satake N
    Jpn J Physiol; 1980; 30(4):491-508. PubMed ID: 6970289
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recording action potentials from cultured neurons with extracellular microcircuit electrodes.
    Pine J
    J Neurosci Methods; 1980 Feb; 2(1):19-31. PubMed ID: 7329089
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Glass pipette-carbon fiber microelectrodes for evoked potential recordings.
    Moraes MF; Garcia-Cairasco N
    Braz J Med Biol Res; 1997 Nov; 30(11):1319-24. PubMed ID: 9532241
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A method for manufacturing long-shanked glass microelectrodes.
    Erhardt M; Junier N
    J Neurosci Methods; 1982 Jul; 6(1-2):85-9. PubMed ID: 7121061
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dependence of cell pH and buffer capacity on the extracellular acid-base change in the skeletal muscle of bullfrog.
    Fujimoto M; Morimoto Y; Kubota T
    Jpn J Physiol; 1988; 38(6):799-818. PubMed ID: 3150473
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Application of active electrode compensation to perform continuous voltage-clamp recordings with sharp microelectrodes.
    Gómez-González JF; Destexhe A; Bal T
    J Neural Eng; 2014 Oct; 11(5):056028. PubMed ID: 25246226
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A quasi-totally shielded, low-capacitance glass-microelectrode with suitable amplifiers for high-frequency intracellular potential and impedance measurements.
    Suzuki K; Rohlicek V; Frömter E
    Pflugers Arch; 1978 Dec; 378(2):141-8. PubMed ID: 569835
    [No Abstract]   [Full Text] [Related]  

  • 29. [Comparative studies of the importance of the sort of glass (normal, supremax glass) for the properties of microelectrodes].
    Isenberg G; Küchler G
    Acta Biol Med Ger; 1969; 22(1):179-89. PubMed ID: 5363898
    [No Abstract]   [Full Text] [Related]  

  • 30. Membrane properties of dentate gyrus granule cells: comparison of sharp microelectrode and whole-cell recordings.
    Staley KJ; Otis TS; Mody I
    J Neurophysiol; 1992 May; 67(5):1346-58. PubMed ID: 1597717
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Compatibility of glass-guided recording microelectrodes in the brain stem of squirrel monkeys with high-resolution 3D MRI.
    Tammer R; Ehrenreich L; Boretius S; Watanabe T; Frahm J; Michaelis T
    J Neurosci Methods; 2006 Jun; 153(2):221-9. PubMed ID: 16343640
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Letter: Impalement artifacts in microelectrode recordings of epithelial membrane potentials.
    Lindemann B
    Biophys J; 1975 Nov; 15(11):1161-4. PubMed ID: 1201332
    [No Abstract]   [Full Text] [Related]  

  • 33. Automatic microelectrode compensator (AMC).
    Llobera OH; Portela A; César CJ; de Xamar Oro JR; Guerrero AH; Pérez JC; Gimeno AL
    Acta Physiol Lat Am; 1976; 26(3):200-5. PubMed ID: 1032261
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simultaneous measurement of pH and membrane potential in rat dorsal vagal motoneurons during normoxia and hypoxia: a comparison in bicarbonate and HEPES buffers.
    Cowan AI; Martin RL
    J Neurophysiol; 1995 Dec; 74(6):2713-21. PubMed ID: 8747226
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Measurement of Na + , K + , and H + activities in tissue using glass microelelectrodes].
    Gebert G
    Arztl Forsch; 1972 Nov; 26(11):379-85. PubMed ID: 4678345
    [No Abstract]   [Full Text] [Related]  

  • 36. INTRINSIC POTENTIALS OF GLASS MICROELECTRODES.
    KOSTYUK PG
    Fed Proc Transl Suppl; 1965; 24():329-32. PubMed ID: 14304778
    [No Abstract]   [Full Text] [Related]  

  • 37. Tip potential of open-tip glass microelectrodes: theoretical and experimental studies.
    Gagné S; Plamondon R
    Can J Physiol Pharmacol; 1983 Aug; 61(8):857-69. PubMed ID: 6627127
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparative measurements of membrane potentials with microelectrodes and voltage-sensitive dyes.
    Bräuner T; Hülser DF; Strasser RJ
    Biochim Biophys Acta; 1984 Apr; 771(2):208-16. PubMed ID: 6704395
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rapid coating of glass-capillary microelectrodes for single-electrode voltage-clamp.
    Juusola M; Seyfarth EA; French AS
    J Neurosci Methods; 1997 Feb; 71(2):199-204. PubMed ID: 9128157
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of luminal buffers in renal tubular acidification.
    Costa Silva VL; Campiglia SS; de Mello Aires M; Malnic G; Giebisch G
    J Membr Biol; 1981; 63(1-2):13-24. PubMed ID: 6458704
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.