These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Weakly noisy chaotic scattering. Bernal JD; Seoane JM; Sanjuán MA Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032914. PubMed ID: 24125332 [TBL] [Abstract][Full Text] [Related]
7. Approximating chaotic saddles for delay differential equations. Taylor SR; Campbell SA Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 2):046215. PubMed ID: 17500986 [TBL] [Abstract][Full Text] [Related]
8. Output functions and fractal dimensions in dynamical systems. de Moura AP; Grebogi C Phys Rev Lett; 2001 Mar; 86(13):2778-81. PubMed ID: 11290037 [TBL] [Abstract][Full Text] [Related]
9. Fractal basin boundaries generated by basin cells and the geometry of mixing chaotic flows. Nusse HE; Yorke JA Phys Rev Lett; 2000 Jan; 84(4):626-9. PubMed ID: 11017332 [TBL] [Abstract][Full Text] [Related]
10. Topological boundaries and bulk wavefunctions in the Su-Schreiffer-Heeger model. Simon DS; Osawa S; Sergienko AV J Phys Condens Matter; 2019 Jan; 31(4):045001. PubMed ID: 30543524 [TBL] [Abstract][Full Text] [Related]
11. Chaotic dynamics of one-dimensional systems with periodic boundary conditions. Kumar P; Miller BN Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062918. PubMed ID: 25615175 [TBL] [Abstract][Full Text] [Related]
12. Fluctuational transitions through a fractal basin boundary. Silchenko AN; Beri S; Luchinsky DG; McClintock PV Phys Rev Lett; 2003 Oct; 91(17):174104. PubMed ID: 14611351 [TBL] [Abstract][Full Text] [Related]
13. Rough basin boundaries in high dimension: Can we classify them experimentally? Bódai T; Lucarini V Chaos; 2020 Oct; 30(10):103105. PubMed ID: 33138466 [TBL] [Abstract][Full Text] [Related]
14. Topology of advective-diffusive scalar transport in laminar flows. Speetjens MF Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 2):026309. PubMed ID: 18352124 [TBL] [Abstract][Full Text] [Related]
15. Numerical explorations of R. M. Goodwin's business cycle model. Jakimowicz A Nonlinear Dynamics Psychol Life Sci; 2010 Jan; 14(1):69-83. PubMed ID: 20021778 [TBL] [Abstract][Full Text] [Related]
16. Cusp-scaling behavior in fractal dimension of chaotic scattering. Motter AE; Lai YC Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jun; 65(6 Pt 2):065201. PubMed ID: 12188774 [TBL] [Abstract][Full Text] [Related]
17. Apparent topologically forbidden interchange of energy surfaces under slow variation of a Hamiltonian. Lu Z; Jarzynski C; Ott E Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):052913. PubMed ID: 26066235 [TBL] [Abstract][Full Text] [Related]
18. Topological aspects of chaotic scattering in higher dimensions. Kovács Z; Wiesenfeld L Phys Rev E Stat Nonlin Soft Matter Phys; 2001 May; 63(5 Pt 2):056207. PubMed ID: 11414990 [TBL] [Abstract][Full Text] [Related]
19. Dynamical characterization of transport barriers in nontwist Hamiltonian systems. Mugnaine M; Mathias AC; Santos MS; Batista AM; Szezech JD; Viana RL Phys Rev E; 2018 Jan; 97(1-1):012214. PubMed ID: 29448491 [TBL] [Abstract][Full Text] [Related]
20. Asymptotic observability of low-dimensional powder chaos in a three-degrees-of-freedom scattering system. Drótos G; González Montoya F; Jung C; Tél T Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022906. PubMed ID: 25215798 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]