These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 12443377)
41. Crystal structure prediction using the minima hopping method. Amsler M; Goedecker S J Chem Phys; 2010 Dec; 133(22):224104. PubMed ID: 21171680 [TBL] [Abstract][Full Text] [Related]
42. Fitting complex potential energy surfaces to simple model potentials: application of the simplex-annealing method. Bustos MarĂșn RA; Coronado EA; Ferrero JC J Comput Chem; 2005 Apr; 26(6):523-31. PubMed ID: 15726571 [TBL] [Abstract][Full Text] [Related]
43. Structural relaxation in atomic clusters: master equation dynamics. Miller MA; Doye JP; Wales DJ Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Oct; 60(4 Pt A):3701-18. PubMed ID: 11970203 [TBL] [Abstract][Full Text] [Related]
44. "Compressing liquid": an efficient global minima search strategy for clusters. Zhou RL; Zhao LY; Pan BC J Chem Phys; 2009 Jul; 131(3):034108. PubMed ID: 19624182 [TBL] [Abstract][Full Text] [Related]
45. Particle rearrangements during transitions between local minima of the potential energy landscape of a binary Lennard-Jones liquid. Vogel M; Doliwa B; Heuer A; Glotzer SC J Chem Phys; 2004 Mar; 120(9):4404-14. PubMed ID: 15268609 [TBL] [Abstract][Full Text] [Related]
46. Communication: Certifying the potential energy landscape. Mehta D; Hauenstein JD; Wales DJ J Chem Phys; 2013 May; 138(17):171101. PubMed ID: 23656107 [TBL] [Abstract][Full Text] [Related]
47. Development of a Structural Comparison Method to Promote Exploration of the Potential Energy Surface in the Global Optimization of Nanoclusters. Weal GR; McIntyre SM; Garden AL J Chem Inf Model; 2021 Apr; 61(4):1732-1744. PubMed ID: 33844537 [TBL] [Abstract][Full Text] [Related]
48. Global minimum determination of the Born-Oppenheimer surface within density functional theory. Goedecker S; Hellmann W; Lenosky T Phys Rev Lett; 2005 Jul; 95(5):055501. PubMed ID: 16090887 [TBL] [Abstract][Full Text] [Related]
49. Cluster growing process and a sequence of magic numbers. Solov'yov IA; Solov'yov AV; Greiner W; Koshelev A; Shutovich A Phys Rev Lett; 2003 Feb; 90(5):053401. PubMed ID: 12633353 [TBL] [Abstract][Full Text] [Related]
50. Asynchronous multicanonical basin hopping method and its application to cobalt nanoclusters. Zhan L; Chen JZ; Liu WK; Lai SK J Chem Phys; 2005 Jun; 122(24):244707. PubMed ID: 16035793 [TBL] [Abstract][Full Text] [Related]
51. Transitions between inherent structures in water. Giovambattista N; Starr FW; Sciortino F; Buldyrev SV; Stanley HE Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 1):041502. PubMed ID: 12005824 [TBL] [Abstract][Full Text] [Related]
52. Characterization of the dynamics of glass-forming liquids from the properties of the potential energy landscape. Banerjee S; Dasgupta C Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021501. PubMed ID: 22463213 [TBL] [Abstract][Full Text] [Related]
53. An efficient genetic algorithm for structure prediction at the nanoscale. Lazauskas T; Sokol AA; Woodley SM Nanoscale; 2017 Mar; 9(11):3850-3864. PubMed ID: 28252128 [TBL] [Abstract][Full Text] [Related]
54. Parallel random tunneling algorithm for structural optimization of Lennard-Jones clusters up to N=330. Shao X; Jiang H; Cai W J Chem Inf Comput Sci; 2004; 44(1):193-9. PubMed ID: 14741028 [TBL] [Abstract][Full Text] [Related]
56. Global minimum structure searches via particle swarm optimization. Call ST; Zubarev DY; Boldyrev AI J Comput Chem; 2007 May; 28(7):1177-86. PubMed ID: 17299774 [TBL] [Abstract][Full Text] [Related]
57. Potential energy surfaces and reaction pathways for light-mediated self-organization of metal nanoparticle clusters. Yan Z; Gray SK; Scherer NF Nat Commun; 2014 May; 5():3751. PubMed ID: 24786197 [TBL] [Abstract][Full Text] [Related]
58. A dynamic lattice searching method with constructed core for optimization of large Lennard-Jones clusters. Yang X; Cai W; Shao X J Comput Chem; 2007 Jun; 28(8):1427-33. PubMed ID: 17330880 [TBL] [Abstract][Full Text] [Related]
59. An Efficient Method Based on Lattice Construction and the Genetic Algorithm for Optimization of Large Lennard-Jones Clusters. Xiang Y; Jiang H; Cai W; Shao X J Phys Chem A; 2004 Apr; 108(16):3586-3592. PubMed ID: 28413878 [TBL] [Abstract][Full Text] [Related]
60. Lattice neural network minimization. Application of neural network optimization for locating the global-minimum conformations of proteins. Rabow AA; Scheraga HA J Mol Biol; 1993 Aug; 232(4):1157-68. PubMed ID: 8371272 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]