These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 12443381)

  • 1. Lubrication corrections for lattice-Boltzmann simulations of particle suspensions.
    Nguyen NQ; Ladd AJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 2):046708. PubMed ID: 12443381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Momentum-exchange method in lattice Boltzmann simulations of particle-fluid interactions.
    Chen Y; Cai Q; Xia Z; Wang M; Chen S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):013303. PubMed ID: 23944579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Local lubrication model for spherical particles within incompressible Navier-Stokes flows.
    Lambert B; Weynans L; Bergmann M
    Phys Rev E; 2018 Mar; 97(3-1):033313. PubMed ID: 29776061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lattice-Boltzmann simulations of repulsive particle-particle and particle-wall interactions: coughing and choking.
    Başağaoğlu H; Succi S
    J Chem Phys; 2010 Apr; 132(13):134111. PubMed ID: 20387925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiphase lattice Boltzmann method for particle suspensions.
    Joshi AS; Sun Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 2):066703. PubMed ID: 19658621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Revisiting the use of the immersed-boundary lattice-Boltzmann method for simulations of suspended particles.
    Mountrakis L; Lorenz E; Hoekstra AG
    Phys Rev E; 2017 Jul; 96(1-1):013302. PubMed ID: 29347057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct simulations of flexible cylindrical fiber suspensions in finite Reynolds number flows.
    Qi D
    J Chem Phys; 2006 Sep; 125(11):114901. PubMed ID: 16999505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions between two touching spherical particles in sedimentation.
    Sun R; Chwang AT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 2):046316. PubMed ID: 17995115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contact line dynamics in binary lattice Boltzmann simulations.
    Pooley CM; Kusumaatmaja H; Yeomans JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 2):056709. PubMed ID: 19113239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-dimensional thermal model of the finite-difference lattice Boltzmann method with high spatial isotropy.
    Watari M; Tsutahara M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Mar; 67(3 Pt 2):036306. PubMed ID: 12689164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mass-conserved volumetric lattice Boltzmann method for complex flows with willfully moving boundaries.
    Yu H; Chen X; Wang Z; Deep D; Lima E; Zhao Y; Teague SD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063304. PubMed ID: 25019909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient lattice Boltzmann algorithm for Brownian suspensions.
    Mynam M; Sunthar P; Ansumali S
    Philos Trans A Math Phys Eng Sci; 2011 Jun; 369(1944):2237-45. PubMed ID: 21536570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrodynamic mobility reversal of squirmers near flat and curved surfaces.
    Kuron M; Stärk P; Holm C; de Graaf J
    Soft Matter; 2019 Jul; 15(29):5908-5920. PubMed ID: 31282522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrodynamic interactions in metal rodlike-particle suspensions due to induced charge electroosmosis.
    Rose KA; Hoffman B; Saintillan D; Shaqfeh ES; Santiago JG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 1):011402. PubMed ID: 19257030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Meshless lattice Boltzmann method for the simulation of fluid flows.
    Musavi SH; Ashrafizaadeh M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):023310. PubMed ID: 25768638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shear viscosity of bulk suspensions at low Reynolds number with the three-dimensional lattice Boltzmann method.
    Lishchuk SV; Halliday I; Care CM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jul; 74(1 Pt 2):017701. PubMed ID: 16907217
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of walls on the migration of non-Brownian spherical particles in creeping flow: a lattice Boltzmann study.
    Monaco E; Brenner G
    Philos Trans A Math Phys Eng Sci; 2011 Jun; 369(1945):2387-95. PubMed ID: 21576152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Force evaluations in lattice Boltzmann simulations with moving boundaries in two dimensions.
    Li H; Lu X; Fang H; Qian Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Aug; 70(2 Pt 2):026701. PubMed ID: 15447614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lattice Boltzmann method for the compressible Euler equations.
    Kataoka T; Tsutahara M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 2):056702. PubMed ID: 15244972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From bijels to Pickering emulsions: a lattice Boltzmann study.
    Jansen F; Harting J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046707. PubMed ID: 21599334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.