These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 12443495)
1. Semiclassical theory of chaotic quantum transport. Richter K; Sieber M Phys Rev Lett; 2002 Nov; 89(20):206801. PubMed ID: 12443495 [TBL] [Abstract][Full Text] [Related]
2. Quantum-chaotic scattering effects in semiconductor microstructures. Baranger HU; Jalabert RA; Stone AD Chaos; 1993 Oct; 3(4):665-682. PubMed ID: 12780071 [TBL] [Abstract][Full Text] [Related]
3. Universality in chaotic quantum transport: the concordance between random-matrix and semiclassical theories. Berkolaiko G; Kuipers J Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 2):045201. PubMed ID: 22680530 [TBL] [Abstract][Full Text] [Related]
4. Statistical description of eigenfunctions in chaotic and weakly disordered systems beyond universality. Urbina JD; Richter K Phys Rev Lett; 2006 Nov; 97(21):214101. PubMed ID: 17155745 [TBL] [Abstract][Full Text] [Related]
5. Semiclassical theory of chaotic conductors. Heusler S; Müller S; Braun P; Haake F Phys Rev Lett; 2006 Feb; 96(6):066804. PubMed ID: 16606030 [TBL] [Abstract][Full Text] [Related]
6. Ehrenfest-time dependence of weak localization in open quantum dots. Rahav S; Brouwer PW Phys Rev Lett; 2005 Jul; 95(5):056806. PubMed ID: 16090905 [TBL] [Abstract][Full Text] [Related]
7. Conductance fluctuations and quantum chaotic scattering in semiconductor microstructures. Marcus CM; Westervelt RM; Hopkins PF; Gossard AC Chaos; 1993 Oct; 3(4):643-653. PubMed ID: 12780069 [TBL] [Abstract][Full Text] [Related]
8. Conductance stability in chaotic and integrable quantum dots with random impurities. Wang G; Ying L; Lai YC Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022901. PubMed ID: 26382470 [TBL] [Abstract][Full Text] [Related]
9. Microscopic theory for the quantum to classical crossover in chaotic transport. Whitney RS; Jacquod P Phys Rev Lett; 2005 Mar; 94(11):116801. PubMed ID: 15903878 [TBL] [Abstract][Full Text] [Related]
10. Quantum chaotic scattering in graphene systems in the absence of invariant classical dynamics. Wang GL; Ying L; Lai YC; Grebogi C Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052908. PubMed ID: 23767599 [TBL] [Abstract][Full Text] [Related]
11. Role of orbital dynamics in spin relaxation and weak antilocalization in quantum dots. Zaitsev O; Frustaglia D; Richter K Phys Rev Lett; 2005 Jan; 94(2):026809. PubMed ID: 15698215 [TBL] [Abstract][Full Text] [Related]
12. Semiclassical form factor for spectral and matrix element fluctuations of multidimensional chaotic systems. Turek M; Spehner D; Müller S; Richter K Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 2):016210. PubMed ID: 15697701 [TBL] [Abstract][Full Text] [Related]
13. The semiclassical regime of the chaotic quantum-classical transition. Greenbaum BD; Habib S; Shizume K; Sundaram B Chaos; 2005 Sep; 15(3):33302. PubMed ID: 16252988 [TBL] [Abstract][Full Text] [Related]
15. Quantum corrections to fidelity decay in chaotic systems. Gutkin B; Waltner D; Gutiérrez M; Kuipers J; Richter K Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 2):036222. PubMed ID: 20365847 [TBL] [Abstract][Full Text] [Related]
16. Semiclassical theory for decay and fragmentation processes in chaotic quantum systems. Gutiérrez M; Waltner D; Kuipers J; Richter K Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 2):046212. PubMed ID: 19518317 [TBL] [Abstract][Full Text] [Related]