These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

791 related articles for article (PubMed ID: 12443544)

  • 1. Interaction in vitro of type III intermediate filament proteins with supercoiled plasmid DNA and modulation of eukaryotic DNA topoisomerase I and II activities.
    Li G; Tolstonog GV; Sabasch M; Traub P
    DNA Cell Biol; 2002 Oct; 21(10):743-69. PubMed ID: 12443544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction in vitro of type III intermediate filament proteins with Z-DNA and B-Z-DNA junctions.
    Li G; Tolstonog GV; Traub P
    DNA Cell Biol; 2003 Mar; 22(3):141-69. PubMed ID: 12804114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction in vitro of type III intermediate filament proteins with triplex DNA.
    Li G; Tolstonog GV; Traub P
    DNA Cell Biol; 2002 Mar; 21(3):163-88. PubMed ID: 12015895
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Type III intermediate filament proteins interact with four-way junction DNA and facilitate its cleavage by the junction-resolving enzyme T7 endonuclease I.
    Li G; Tolstonog GV; Sabasch M; Traub P
    DNA Cell Biol; 2003 Apr; 22(4):261-91. PubMed ID: 12823903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction in vitro of type III intermediate filament proteins with higher order structures of single-stranded DNA, particularly with G-quadruplex DNA.
    Tolstonog GV; Li G; Shoeman RL; Traub P
    DNA Cell Biol; 2005 Feb; 24(2):85-110. PubMed ID: 15699629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [DNA supercoiling and topoisomerases in Escherichia coli].
    Gómez-Eichelmann MC; Camacho-Carranza R
    Rev Latinoam Microbiol; 1995; 37(3):291-304. PubMed ID: 8850348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intermediate filaments reconstituted from vimentin, desmin, and glial fibrillary acidic protein selectively bind repetitive and mobile DNA sequences from a mixture of mouse genomic DNA fragments.
    Tolstonog GV; Wang X; Shoeman R; Traub P
    DNA Cell Biol; 2000 Nov; 19(11):647-77. PubMed ID: 11098216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preferential relaxation of supercoiled DNA containing a hexadecameric recognition sequence for topoisomerase I.
    Busk H; Thomsen B; Bonven BJ; Kjeldsen E; Nielsen OF; Westergaard O
    Nature; 1987 Jun 18-24; 327(6123):638-40. PubMed ID: 3037376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assays for the preferential binding of human topoisomerase I to supercoiled DNA.
    Yang Z; Champoux JJ
    Methods Mol Biol; 2009; 582():49-57. PubMed ID: 19763941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scanning force microscopy of the complexes of p53 core domain with supercoiled DNA.
    Jett SD; Cherny DI; Subramaniam V; Jovin TM
    J Mol Biol; 2000 Jun; 299(3):585-92. PubMed ID: 10835269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcription generates positively and negatively supercoiled domains in the template.
    Wu HY; Shyy SH; Wang JC; Liu LF
    Cell; 1988 May; 53(3):433-40. PubMed ID: 2835168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA supercoiling during ATP-dependent DNA translocation by the type I restriction enzyme EcoAI.
    Janscak P; Bickle TA
    J Mol Biol; 2000 Jan; 295(4):1089-99. PubMed ID: 10656812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hypernegative supercoiling of the DNA template during transcription elongation in vitro.
    Drolet M; Bi X; Liu LF
    J Biol Chem; 1994 Jan; 269(3):2068-74. PubMed ID: 8294458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hin-mediated inversion on positively supercoiled DNA.
    Lim HM; Lee HJ; Jaxel C; Nadal M
    J Biol Chem; 1997 Jul; 272(29):18434-9. PubMed ID: 9218487
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ability of viral topoisomerase II to discern the handedness of supercoiled DNA: bimodal recognition of DNA geometry by type II enzymes.
    McClendon AK; Dickey JS; Osheroff N
    Biochemistry; 2006 Sep; 45(38):11674-80. PubMed ID: 16981727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions of Drosophila DNA topoisomerase II with left-handed Z-DNA in supercoiled minicircles.
    Glikin GC; Jovin TM; Arndt-Jovin DJ
    Nucleic Acids Res; 1991 Dec; 19(25):7139-44. PubMed ID: 1662808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intermediate filaments and gene regulation.
    Traub P
    Physiol Chem Phys Med NMR; 1995; 27(4):377-400. PubMed ID: 8768794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Paranemic structures of DNA and their role in DNA unwinding.
    Yagil G
    Crit Rev Biochem Mol Biol; 1991; 26(5-6):475-559. PubMed ID: 1662125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA topoisomerase II from Drosophila melanogaster. Relaxation of supercoiled DNA.
    Osheroff N; Shelton ER; Brutlag DL
    J Biol Chem; 1983 Aug; 258(15):9536-43. PubMed ID: 6308011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Roles of topoisomerases in maintaining steady-state DNA supercoiling in Escherichia coli.
    Zechiedrich EL; Khodursky AB; Bachellier S; Schneider R; Chen D; Lilley DM; Cozzarelli NR
    J Biol Chem; 2000 Mar; 275(11):8103-13. PubMed ID: 10713132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 40.