These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 12443581)

  • 1. Osteogenic potential of rabbit marrow stromal stem cells cultured in vitro: a histochemical and scanning electron microscopic study.
    Wan C; Yang Q; Deng L; Shen W; He C; Qi J
    Chin J Traumatol; 2002 Dec; 5(6):374-9. PubMed ID: 12443581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Osteogenic potential of rabbit dermal fibroblasts cultured in vitro: a histochemical and scanning electron microscopic study].
    Chai BF; Tang XM; Xu RH
    Zhonghua Wai Ke Za Zhi; 1994 Jul; 32(7):443-5. PubMed ID: 7842988
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Osteogenesis role played by dermal fibroblasts cultured in vitro].
    Xu RH; Rao HM; Zhu YP
    Zhonghua Wai Ke Za Zhi; 1994 Mar; 32(3):190-2. PubMed ID: 7842916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Study on culture and osteogenic potential of stromal cell of bone marrow in vitro].
    Liu J; Zeng C; Wang H
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 1997 Jul; 11(4):238-41. PubMed ID: 9867991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Osteogenic potential of rabbit dermal fibroblasts cultured in vitro: a scanning electron microscopic study.
    Chai B; Tang X; Li H
    Chin J Traumatol; 1999 Nov; 2(2):75-78. PubMed ID: 11900660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation, proliferation, characterization and in vivo osteogenic potential of bone-marrow derived mesenchymal stem cells (rBMSC) in rabbit model.
    Ninu AR; Maiti SK; Kumar S; P S; Kritaniya D; Gupta S; Saxena A; Kumar N
    Indian J Exp Biol; 2017 Feb; 55(2):79-87. PubMed ID: 30183232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vitalized guided bone regeneration membrane from marrow stromal cells.
    Feng X; Gao Z; Mao T; Chen F
    Int J Oral Maxillofac Implants; 2009; 24(4):672-8. PubMed ID: 19885407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of proepicardial cells on the osteogenic potential of marrow stromal cells in a three-dimensional tubular scaffold.
    Valarmathi MT; Yost MJ; Goodwin RL; Potts JD
    Biomaterials; 2008 May; 29(14):2203-16. PubMed ID: 18289664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mesenchymal stem cells cultured on a collagen scaffold: In vitro osteogenic differentiation.
    Donzelli E; Salvadè A; Mimo P; Viganò M; Morrone M; Papagna R; Carini F; Zaopo A; Miloso M; Baldoni M; Tredici G
    Arch Oral Biol; 2007 Jan; 52(1):64-73. PubMed ID: 17049335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of osteogenesis on dermal fibroblasts cultured in vitro.
    Xu RH; Rao HM; Zhu YP; Chai BF
    Chin Med J (Engl); 1993 Nov; 106(11):825-9. PubMed ID: 8143494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation, characterization and differentiation potential of rat bone marrow stromal cells.
    Polisetti N; Chaitanya VG; Babu PP; Vemuganti GK
    Neurol India; 2010; 58(2):201-8. PubMed ID: 20508336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scaffold preferences of mesenchymal stromal cells and adipose-derived stem cells from green fluorescent protein transgenic mice influence the tissue engineering of bone.
    Wittenburg G; Flade V; Garbe AI; Lauer G; Labudde D
    Br J Oral Maxillofac Surg; 2014 May; 52(5):409-14. PubMed ID: 24685477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Osteogenic effects of bioactive glass on bone marrow stromal cells.
    Radin S; Reilly G; Bhargave G; Leboy PS; Ducheyne P
    J Biomed Mater Res A; 2005 Apr; 73(1):21-9. PubMed ID: 15693019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retention of the stemness of mouse adipose-derived stem cells by their expansion on human bone marrow stromal cell-derived extracellular matrix.
    Xiong Y; He J; Zhang W; Zhou G; Cao Y; Liu W
    Tissue Eng Part A; 2015 Jun; 21(11-12):1886-94. PubMed ID: 25836590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Culture of marrow stromal cells derived from bone marrow specimens formed at fracture site of human long bone.
    Iwamoto M; Shibano K; Watanabe J; Asada-Kubota M; Ogawa R; Kanamura S
    Bone; 1993; 14(5):799-805. PubMed ID: 8268053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation of rabbit bone marrow mesenchymal stem cells using density gradient centrifugation and adherence screening methods.
    Xia CS; Zuo AJ; Wang CY; Wang YZ
    Minerva Med; 2013 Oct; 104(5):519-25. PubMed ID: 24101109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of autologous bone marrow stromal cells differentiated on scaffolds for canine tibial bone reconstruction.
    Özdal-Kurt F; Tuğlu I; Vatansever HS; Tong S; Deliloğlu-Gürhan SI
    Biotech Histochem; 2015; 90(7):516-28. PubMed ID: 25994048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of osteoblasts derived from bone marrow stromal cells in a modified cell culture system.
    Deliloglu-Gurhan SI; Vatansever HS; Ozdal-Kurt F; Tuglu I
    Acta Histochem; 2006; 108(1):49-57. PubMed ID: 16443258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of the porosity of starch-based fiber mesh scaffolds on the proliferation and osteogenic differentiation of bone marrow stromal cells cultured in a flow perfusion bioreactor.
    Gomes ME; Holtorf HL; Reis RL; Mikos AG
    Tissue Eng; 2006 Apr; 12(4):801-9. PubMed ID: 16674293
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomimetic collagen scaffolds for human bone cell growth and differentiation.
    Yang XB; Bhatnagar RS; Li S; Oreffo RO
    Tissue Eng; 2004; 10(7-8):1148-59. PubMed ID: 15363171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.